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ABSTRACT

Coal blending is one of several optioagailablefor reducing sulfur emissions frowoal-fired
power plants. However, decisioabout coablending mustealwith uncertainty andariability

in coal properties, and with the effect of off-design coal characteristics on power plant performance
andcost. Todealwith theseissues, amulti-objective chance-constrained optimization model is
developed for an illustrative coal blending problem. Sulfur contentc@sient and heatingalue
are considered as normally distributed randaarmiables. The objectives of the model include
minimizing: (1) the expected (meat)sts ofcoal blendingand (2)the variance of coal blending
costs. The cost objective function includes coal purchasing cost, ash disposal coseraolfar
cost, and fuel switchingcosts. Chance constraints include severigk measures, such as the
probability of exceeding the sulfur emission standaftie model issolved using anixed integer
non-linear optimizer. Several resuitee presented to illustrate theodel. Directionsfor future
work are described.

INTRODUCTION

The 1990 Clean Air Act Amendment regulationssoitfur emissions froncoal-fired power plants
have motivated a search for cost-effective compliapteons, particularlyfor plants burning high
sulfur coal without any sulfur emissionsontrol technology. Becaughe capitaland operating
costs of post-combustion flue gas desulfurization (FGD) systenpotmetially high, anattractive
alternative may bewitching from high sulfur to low sulfur coal, or blendimgals to reduce
overall sulfur content. This is particularly attractive alternativier small or oldpower plants,
where the levelized costs of retrofitting FGD systems would be high. Furthecoalsyitching
or blending tomeet thePhase Irequirements of the Cleafdir Act Amendment may enable the
postponement of costly scrubber retrofits at squtents, thereby allowing utilities tabecome
familiar with the sulfur emissiorallowance tradingnarket, observéhe actual markeprices for
emissions allowances, and chogsatentially more cost-effective clean cdakchnologies than
scrubbers for the Phase Il requirements [1-4].

Economical operation of power plant requires carefudttention to fuelquality, such as sulfur
content, aslcontent and heatingalue. Howevercoal properties are inherently variable even
within a single coal seam and, from the perspective of a power plantiroe¢b]. For example,
Cheng anet al. [6] characterize coglropertyvariability usingtime series modelspplied to two
specific coals. Variability in coal properties poses yet another challenge for plawesperation,
due to the effect otoal properties on potentiallall major power plant systems. Thus, a key
motivation for coal blending is to minimize the variance in coal properties over time, to enable more
predictable and economical plant operation with a minimum in equipment setting adjugfyents
9]. Since the properties of coal are random variables, therdsk that the specified requirement
of the mixture can not be met 100 percent oftiime. Therefore, one must considee risk (or,
conversely,the reliability) associateavith potential exceedance of coal qualgpecifications.
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Understanding this risk, in terms of thaulti-dimensional constraints imposed coal properties,
should be ofinterest to coalsuppliers,coal users,and the regulatoncommunity. Given a
characterization of variability in thproperties of coals comprising ldend, we may ask the
following questions:

(1) How should wespecify coal quality in terms ofconstraints andhe probability of
exceeding those constraints due to variability in coal properties?

(2) Given an explicit probabilistic description of acceptable blended coal gialitycan one
optimize coal blends to minimize emissions and/or cost?

(3) How can the variance in coal properties be minimized by coal blending?

(4) What are therade-offs between different objectivés coal blending (e.g., minimizing
expected cost, expected emissions, or variance in cost or emissions)?

(5) What is the benefit of reducing coal property measurement error?

This paper will answer questions such as these takingaattount the probabilistic nature odal
properties and the need to consider the effects of changealiproperties on plarperformance,
emissionsandcost. Amathematicaprogramming model is developed and applied to generate
insight into: (1) coal blending practicdor a powerplant; (2) implications of coablending for
regulatory compliance; and (3) investment decision makangower plant modifications required

for coal blending and for improvement of coal measurements.

MATHEMATICAL APPROACHES TO COAL BLENDING

Gershon [10] describes fowwomputerized approachdsr evaluating coablending strategies.
They are spreadsheet analysis, computerized search, expert systdimsaammogrammingLP).
Of these, LP isthe most rigorousoptimization technique. Itcan considerall coal qualities
simultaneously instead of one at a time. Coal blending analssig LP hadveen employed by
many [e.g., 7,8,11,12]. A key limitation of the LP modais their inability to deal quantitatively
with variation in coal properties.

In a real decision makingnvironment, it is often necessary to consider more than one objective.
Multiple objectives may be competingnd require trade-offfe.g., emissions andcost).
Furthermorethe random nature afoal properties suggeststher objectives. Variability in coal
properties in individual coals results variability in power plant operating andmaintenance
(O&M) costs whichare influenced by cogbroperties(e.g., ash disposal costs). Therefore, an
additional objective of codllending may be teninimize the variance iemissions and/ocost.

We alsomay be interested in minimizingpth the expected value and variancecofl blending
costs.

Chance-Constrained Programmi(@@CP) is anoptimization approachvhich can deal explicitly

with variability and, hencepvercome theshortcomings of LP approaches agplied tocoal
blending [13]. CCP incorporates so-called "chance constraints" which incluslglait measure

of the reliability (probability) with which the constraints must be met. Through the use of standard
probability distribution models which are analytically tractable, it is possible to caheechance
constraints into "deterministiequivalents.” This enablgSCP models to beamplementedusing
standardmathematicalprogramming packages.CCP techniques have been applied to many
environmental system optimization problems [14,15]

VARIABILITY IN COAL PROPERTIES

The properties of coals, such as sulfur content, ash contenieatidgvalue, are treated here as
random variables to reflect their variability and measurement uncertainties. ClaénfpEehave
statistically characterized theroperties of selected coalsing time-seriesmodels. Table 1
summarizes the statistical propertiestafo coals. These data aréor medium sulfur coals.
Therefore, in our analyses obal blending options, we assumthat a fluegas desulfurization
system with 90percentsulfur capture isrequired. The analysis framework, howevecan be
applied to cases in which coal blending substitutes for FGD as an emission control option.
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Table 1. Coal Characteristics and Prices

Coal 1 Coal 2
Description u o M o
Sulfur Content, % 3.22 0.37 2.73 0.28
Ash Content, % 19.80 2.67 12.09 1.99
Heating Value, Btu/lb 11,220 2 369 12,440 1,840
Price, $/ton 30¢ 40¢

a Data are from Cheng et al. [6] except where noted.meang = standard deviation
b Estimated based on data by Cheng et al.

¢ Based on typical values for medium sulfur coals and an illustrative price prdoriarower
sulfur coal.

A MULTI-OBJECTIVE CHANCE CONSTRAINT PROGRAMMING MODEL

The variability of coalproperties implies a need to includsk andreliability criteria in any coal
blending optimization model. To deal with the probabilistic nature ofmaglerties, andhe need
to considermultiple objectives, amulti-objective CCP model is developed. Here, a CCP
formulation is employed which includes two objectives: (1) minimize the expected (cusas Jof
coal blending; and (2) minimize the variance of coal blendogjs. The model formulation easily
can be extended to include additional objectives regareingsions omplant operations Coal
blending costs include the purchase priceadhcoal, differences in ash disposal costspared
to the design coal, differences in FGD sorbent and sludge digmmstalincremental capitatosts
required for plant modifications to accommodate off-desiggis,and othelincremental operating
and maintenance (O&M)osts. Becausecostsare sensitive t@oal properties, whictare random
variables, the costs associated with coal blending are themselves uncertain. Becausecsiected
are incurred only if more than one coal is used, the cost model is formuatedamixed integer
approach.

The chance constraints to the optimization model include: (1) sulfur emissions mustthaness

equal an emission limit with a certain reliability (e.g., 95 percent)th@plended coashcontent

must conform to a specification with a given reliability; and (3) the average coal heating value input
must conform tdhe plant'selectricenergy output requirementThe latterconstraint is required
because variability in heating values and differences in heating values between coals in the blend
affect the coamass flowrequirementor a given plantoutput. The chance constrairibr sulfur
emissions illustrates the model formulation:

P{(a-n)(3 xS)< S|z as )
The probability must be greater than a reliability linad,that the controlle@missionstaking into
account FGD removal efficiency, the sulfurcontent of each coal in th#end, $, and themass
fraction of each coal,jxis less than a specific limit,*S The details of model formulatidor the
objective function and multi-objective mixed-integ&CP are given byShih and Frey16]. The

key inputs to the model include the coal properties described in Table 1 and assumptions regarding
the constraints of the model. The latter are given in Table 2.

Table 2. lllustrative Assumptions for Chance Constraints

Constraint Reliability
Description Units Symbol|  Value [ Symbol| Probability
Sulfur Emissions Equiv. wt-% g 0.36] «as 0.95
of coal
Ash Content, wt-% of coal A* 24.0 aA 0.90
Coal Heat Inpt 106 BTU/hr H* 4875

a H* is the nominal coal heat input requiredneet agiven electricity generatiomlemand.
We assume a 500 MW power plant with a heat rate of 9,750 BTU/kWh.
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Figure 1.The Trade-Off Between Expected Value and Standard Deviation of Cost

Table 3. Optimal Coal Blends for Different Weightings of Minimizing Expected Value and
Standard Deviation of Cost

Weights Expected Cost Standard DeV. Coal Feed Rafe

Node (w1, Wo) E(C), $/hr of cost, $/hr  tons/hr (m, my)
T (0.00, 1.00) 9694 59 (68.6, 134)
2 (0.01, 0.99) 9526 60 (85,8, 118)
3 (0.02, 0.98) 9338 63 (105, 101)
4 (0.03, 0.97) 9102 69 (129, 79.4)
5 (0.04, 0.96) 8746 82.3 (166, 46.5)
6 (0.05, 0.95) 8742 82.4 (166, 46.2)

am = coal feed rate for Coal 1;a% coal feed rate for Coal 2.

ILLUSTRATIVE MODEL APPLICATIONS

We consider two case studies to illustrate the benefits of a probabilistic approaclarialyises of

coal blending options. The first concerns the trade-offs between minimizing the mean and variance
of cost. The second focuses on a sensitivity analysighefsulfur emissionconstraint and its
implications for coal blending requirements and cost.

Trade-OffBetweenExpectatiorandVarianceof Cost

Variance incost is obtainedor any given coal blenddue to the stochastic nature of tbeal
properties, which in turmffect plant performance armbst. The results formaking trade-offs
between the two objectives of minimizing expeatedt and standard deviation (SD) in cost were
obtained using the weighting method of Cohon [17]. The objective function may be written as:

Min Z = wq E(Cost) + v SD(Cost) (2)

Figure 1 shows the effect on the optimal solution of different values of the weiglaadwy, on
the competingbjectives. The numbers oreach point of thegraph refer to entries ifiable 3,
which provides details regarding the weights employed in the objective function, the optimal values
obtained for expected cost and standard deviation in cost, and the assuatiatatblends for the
two coals consideretiere. Point 1 orthe graph representthe case inwhich the standard
deviation of cost is minimizedyhereas Point 6 represents@nbination of minimized expected
cost and standard deviationgost. The resultsindicate thatefforts focused omminimizing the
expected value of the cost will increase the variance in the ogtosglwhile efforts tominimize
variance in cost will result in an increased expectest. Toreduce the variance tost over the
range considered here, the proportion of the cleaner coal, which has adoaece in properties
that affect cost, must be increased. In this case, a proportion of 134 tons/timicletner coal
in the blend yields theninimum variancecase. Toreduce the expected value abst, ahigher
proportion of the dirtier coal must be employed in the blend. However, the sulfur encissrme
constraint becomes bindinghen 166 tons/hour othe blend is comprised of the dirgoal.
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Therefore, any furtheincrease in the weight on minimizing expectaxt will not change the
solution.

In a practicalpplication, a poweplant operator may be willing to give \gpme expected cost
savings in order toeduce the variance processoperatingconditions, which wouldeduce the
number of changes in equipment settings and provide more stable plant operations.

Effect of Sulfur EmissionsReliability Constrainion Minimum ExpectedCost

Here we consider aabjective of minimizing expectedost and its sensitivity to assumptions
regarding the sulfur emissions requirement tnedreliability with which the requiremenmust be
met. The results are illustrated in Figure 2, where the minimum expected cost isyaottesd the
reliability with which the emission constraint is met for three sulfur emission requirenidmse
results were obtained using the constraint method of Cohon [17].

Each of the sulfur emission requirement curves in Figure 2 has a step juntpe [&fi-hand side

of thejump, onlythe singlebasecoal isadopted. Athe point of thgump, the cleaner coal is
included in the blend to meet the reliability requirement. There is an associated jump in cost due to
the plant modifications and the associated capital and O&M costs required to accommodate the new
coal type. As the reliability criteria becomes more stringent, a larger proportiba ofeaner coal

must be included in thilend, furtherincreasingcosts. Forany sulfur emission levethere is a

point beyond which the reliability criteria become infeasible. For example, givewdlevailable

type ofcoals,and a sulfur emissiorequirement of no more thah35 percent equivalentoal

sulfur contentthe maximum reliability that can be obtained9®.8 percent(corresponding to
blending34.4 tons/hr ofCoal 1 and165 tons/hr ofCoal 2). To beable to complywith the
emission requirement with a higher reliability than this would require inclusion of a third coal in the
blend with a lower sulfur content and/or lower variance in sulfur content than the cleaner of the two
coals considered here.
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Figure 2. Trade-Off Between Expectation of Cost versus Reliability of Meeting the Sulfur
Emission ConstraintXs).

CONCLUSIONS AND FUTURE RESEARCH

We have demonstrated the use of the Ch&urestrained Programming (CC#chniquefor coal
blending decision making. This technique perrakplicit consideration of the variability inherent
in coal characteristics, whiclare ignored in traditional linear programming approachesot
blending optimization. Furthermore, the CCP framework enaxelecit evaluation of the effects
of reliability criteria on coablendingdecisions. The casestudies described here hawMestrated
the nature of competing objectives faced by decision makers regamiiisgions anatost, both
with respect taninimizing expected values arsiandard deviations.The latterconsideration is
important from both a plant operations and a regulatory compliance perspective.
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As part of ongoingvork, weare extending the castudies presented here itelude additional
objectives. These wilhclude minimizing: (1) the expected value cfulfur emissions; (2) the
variance ofsulfur emissions; and (3he tolerancevith which the plant meets electricdemand,

given variability in coal heatingalues. The model applications will be extended to include case
studies exploring trade-offs among various combinations of objectsted) asminimizing
expected cost and the variancesuifur emissions.Analyses will be performed to illustrate how

CCP can beused tohelp identify and specify specificatiorigr coal quality. Furthermore, the

CCP approach will be used to evaluate the potential benefits of more accurate measurements of coal
properties.

In the future, wouldike to extend the application @CP tocoal blends consisting of morhan

two coals, asvell as to deal more explicitlyvith the real-time implications of coal blending
decisions as a function of time series datactal properties. Agart of such work, weenvision
revisiting the assumptions regarding distribution shapes and dependences. Furthermore, the
objective functiorfor coal blending can be tailored to site speciiieeds,and to consideration of
additional attributes such as NOr CO emissions.
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