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ABSTRACT 

Advances in methodology and computing power enable the application of a quantitative 

approach to characterizing both variability and uncertainty in emission factors.  Variability refers 

to actual differences in emissions from one source to another due to differences in feedstock 

composition, design, maintenance, and operation. Uncertainty refers to lack of knowledge 

regarding the true emissions because of measurement errors (both random and systematic), 

limited sample sizes (statistical random sampling error), and non-representativeness (which can 

introduce additional errors, including systematic errors). The set of numerical methods 

generically known as bootstrap simulation are a powerful tool for characterization of both 

variability and random sampling error. In this paper, we demonstrate the use of bootstrap 

simulation and related techniques for the quantification of variability and uncertainty for a 

selected example of NOx emissions from coal-fired power plants. We have developed a prototype 

software tool that enables a user to display data sets for emission factors and activity factors for 

selected power plant technology groups.  The user can select a parametric distribution to fit to 

the data.  The user enters information regarding the number of power plant units in the inventory, 

and can display a variety of results regarding both variability and uncertainty in the inputs to the 

inventory, as well as uncertainty in various outputs of the inventory. While our example is 

focused upon emission factors for a selected criteria pollutant, the same methodology can be 

applied to other pollutants (e.g., hazardous air pollutants, greenhouse gases). The policy 

relevance of probabilistic inventories will be discussed. 

 

Keywords:  Variability, Uncertainty, Emission Inventories, Emission Factors, Activity Factors, 

Monte Carlo simulation, probabilistic modeling, bootstrap simulation, nitrogen oxides, power 

plants, data quality, quality assurance 

INTRODUCTION 

Emission inventories (EIs) are used at federal, state, and local governments and by 

private corporations for: (a) characterization of temporal emission trends; (b) emissions 

budgeting for regulatory and compliance purposes; and (c) prediction of ambient pollutant 

concentrations using air quality models.  If random errors and biases in the EIs are not 

quantified, they can lead to erroneous conclusions regarding trends in emissions, source 

apportionment, compliance, and the relationship between emissions and ambient air quality.1   

The National Research Council has recently recommended that quantifiable uncertainties 

be addressed in estimating mobile source emission factors, and in the past has addressed the need 

for understanding of uncertainties in emission inventories used in air quality modeling and in risk 
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assessment.2,3  The U.S. Environmental Protection Agency (EPA) has developed guidelines for 

Monte Carlo analysis of uncertainty, and has also sponsored several workshops regarding 

probabilistic analysis.4,5 ,6  Probabilistic techniques have recently been applied to estimation of 

uncertainty in emission factors for mobile sources, major stationary sources and area sources.1,7-

18 

Both variability and uncertainty should be taken into account in the process of developing 

a probabilistic emission inventory.  Variability is the heterogeneity of values with respect to 

time, space, or a population.  Variability in emissions arises from factors such as:  (a) variation in 

feedstock (e.g., fuel) compositions; (b) inter-plant variability in design, operation, and 

maintenance; and (c) intra-plant variability in operation and maintenance.  Uncertainty arises due 

to lack of knowledge regarding the true value of a quantity.  It refers to statistical sampling error, 

measurement errors, and systematic errors.  In most cases, emissions estimates are both variable 

and uncertain.  Therefore, we employ a methodology for simultaneous characterization of both 

variability and uncertainty based upon previous work in emissions estimation, exposure 

assessment, and risk assessment.1,9,10,12-17   The method features the use of Monte Carlo and 

bootstrap simulation. The approach is illustrated by example for the case of emissions of NOx 

from electric utility power plants.  The example is conveyed via the Analysis of Uncertainty and 

Variability in Emissions Estimation (AUVEE) prototype software tool that has been developed 

for proof-of-concept purposes.  The specifics of the methodology used by the AUVEE software 

are documented in Frey and Zheng.19  A previous report by Frey, Bharvirkar, and Zheng 

illustrates the application of similar methods to three case studies.1   

The purposes of this paper are: (1) to introduce the development of database used in the 

AUVEE; (2) to introduce some aspects of the development and implementation of the AUVEE 

system; and (3) to illustrate the methodology developed in this paper by using an example case 

study from electricity utility power plant NOx emissions.   

GEENRAL APPROACH 

The general approach employed to quantify variability and uncertainty in emission 

inventories and emission factors can be summarized as the following major steps:19 

1. Compilation and evaluation of a database for emission and activity factors; 

2. Visualization of data by developing empirical cumulative distribution functions for 

individual activity and emission factors; 

3. Fitting, evaluation, and selection of alternative parametric probability distribution 

models for representing variability in activity data and emission factor data; 

4. Characterization of uncertainty in the distributions for variability; 

5. Propagation of uncertainty and variability in activity and emissions factors to estimate 

uncertainty in facility-specific emissions and/or total emissions from a population of 

emission sources; and 

6. Calculation of importance of sources of uncertainty via sensitivity analysis. 

 

The details for Step 2 through Step 6 are documented in the Frey, Zheng.19, 20  The 

relevant issues for Step 1 are illustrated below through the introduction of the development of 

database used in the example for the case of emissions of NOx from electric utility power plants. 
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DEVELOPMENT OF A DATABASE  

In this section, the development of the database used in the case of emissions of NOx 

from electric utility power plants and AUVEE is introduced.  The data used for the case study is 

based upon Continuous Emission Monitoring (CEM) for individual power plant units obtained 

through the U.S. Environmental Protection Agency.  In this project, only quarterly data files 

were used.  In the case studies of this project, two averaging times were considered:  (1) 6-

month; and (2) 12-month.  The purpose of the 6-month averaging time was to characterize 

emissions that include the "ozone season."  The purpose of the 12-month averaging time was to 

be able to characterize annual emissions for emissions budgeting and other purposes.   

The 6-month time period is intended to be inclusive of summer months.  Therefore, the 6-

month averages are based upon combining data from the 2nd and 3rd quarters of the year, 

including the months from April through September.  The 12-month averages are based upon the 

entire year.  At the time that the data collection effort was made, quarterly data were available 

for the 1st quarter of 1997 through the 2nd quarter of 1999.  Therefore, complete datasets of four 

quarters were available only for 1997 and 1998.  Furthermore, data sets needed to characterize 

the 6-month period inclusive of the summer were available only for 1997 and 1998. 

After the data combination and screening processes were completed, the final database 

was ready for statistical analysis. The data base contains unit/stack identification (unit ID and 

ORISPL identifier), general information (state, region), technology group (boiler type, NOx 

control technology), operation data (capacity, operating time), and ten quarters of NOx emission 

data.  This database was used as a basis for the internal database of the prototype AUVEE 

software. 

For a power plant unit, emission factors are often reported as mass of pollutant produced 

per unit of fuel consumed.  The unit electrical generation and the power plant efficiency were 

used to calculate the fuel input.  Unit efficiency is typically reported as a "heat rate", which is the 

ratio of fuel input with respect to electricity generation, in units of BTU of fuel input per kWh of 

electricity generated.  Unit load is often summarized using the capacity factor.  

Four quantities were calculated from the combined database. These are:  (1)  unit/stack 

heat rate (BTU/kWh); (2) unit/stack capacity factor (actual kWh generated/maximum possible 

kWh); (3) NOx emission rate on a fuel input basis (g/GJ); and NOx emission rate on an energy 

output basis (g/GJ).  Data from the final database was used to calculate the average emission 

factors and activity factors for each unit or stack and for both averaging times.  

The emissions and activity data were calculated for selected technology groups.  Four of 

the technology groups were selected based upon the most  prevalent types of units in the data 

base.  These include:  (1) dry bottom, wall-fired boilers with no NOx control; (2) dry bottom, 

wall-fired boilers with low NOx burners (LNB); (3) tangential-fired boilers no NOx controls; and 

(4) tangential-fired boilers with low NOx burners and overfire air option 1, referred to as LNC1.  

The number of data points for these four technology groups ranges from 36 to 136, depending 

upon the technology group and the averaging time used.  In addition, one other technology group 

was selected that has a small sample size.  The reason for selecting this group was to demonstrate 

that the probabilistic method for developing estimates of variability and uncertainty in emission 

inventories is able to deal with small data sets.  The category for dry bottom, turbo-fired boilers 

with overfire air has only six data points.  The methods used to characterize variability and 
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uncertainty in the emissions associated with these five technology groups can be extended later 

to include other technology groups. 

To simplify the database as much as possible, it is desirable to be able to select data for 

one representative year.  Data for 1997 and 1998 were compared to identify similarities and 

differences between them.  The data for the two years were similar, implying that data for either 

year could be used as the basis for analysis.  The more recent 1998 data were selected.  In 

addition, possible dependencies between activity and emission factors were evaluated.  No 

significant dependencies were found.  Therefore, it was not necessary to attempt to simulate 

statistical dependencies among emission and activity factors. 

AUVEE SYSTEM DEVELOPMENT AND IMPLEMENTATION  

Here, we briefly introduce the functional design of AUVEE, the composition of the main 

modules and the relationships among them.  In AUVEE, the user sets up a project.  The project 

contains information on the choice of an internal emission factor and activity factors database, 

project name, project comments, and user data regarding the number of power plant units 

included in the inventory, the boiler and emissions control technology for each unit, and the 

capacity of each unit. 

Figure 1 shows the conceptual design of AUVEE.  AUVEE is composed of 3 databases, 

which include an internal database, a user input database and an interim database.  In addition, 

AUVEE includes four main modules:  (1) fitting distributions; (2) characterizing uncertainty; (3) 

calculating emission inventories; and (4) user data input.  AUVEE features an interactive 

Graphical User Interface (GUI).  

The user may select either a 6-month average or a 12-month average database as the basis 

for developing either a 6-month or 12-month emission inventory, respectively.  The internal 

database cannot be modified by the user in the prototype version of the software.  The user input 

database stores data that the user provides regarding the number of power plant units, the boiler 

and emission control technology for each unit, and the capacity of each unit.  This database can 

be edited by the user via the user data input module. 

The interim database in AUVEE is used to store the results from the fitting distribution 

module and to store project information.  A default interim database is provided so that the user 

can proceed to calculate emission inventory results even without making a new selection of 

parametric distributions to represent each input to the emission inventory. 

The fitting distribution module implements all calculations for fitting parametric 

distributions to emission factor and activity factor data.  This module provides graphs comparing 

fitted distributions to the data, allowing the user to evaluate the goodness of fit of parametric 

distributions.  The user has the option, via a pull-down menu, to select alternative 



Frey, H.C. and J. Zheng, “Method for Development of Probabilistic Emission Inventories: Example Case Study for Utility NOx 

Emissions,” Proceedings, U.S. Environmental Protection Agency Emission Inventory Conference, Atlanta, GA, April 2002 

 5  

Internal

Database

Interim

Database

User Input

Database

Fitting

Distribution

Module

Uncertainty

Analysis

Module

Emission

Inventory

Module

User Data

Input Module

Interactive

Graphic User

Interface

Module

Tabular

Output

Calculation

Result

Graphic

Output

File Input and

Output

Mean …. Alpha Beta

Heat

Rate 11000 …. ….. ….
C.F. …… …. …… …..

….. …. …. ….. …..

95 percent

90 percent

Data Set

Confidence Interval

50 percent

Fitted Beta Distribution

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u
la

ti
v

e 
P

ro
b
ab

il
it

y

0.0 0.2 0.4 0.6 0.8 1.0

Capacity Factor

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

7000 8000 9000 10000 11000 13000 1400012000

 Heat Rate (BTU/GJ Fuel Input)

Data Set (n=41)

 Fitted Lognormal

 Distribution

Figure 1.  Conceptual Design of the Analysis of Uncertainty and Variability in Emissions Inventories (AUVEE)

Prototype Software System

parametric distributions for fit to the data.  When the user exits the fitting distribution model, the 

current set of fitted distributions are saved to the interim database for use by other modules in the 

program. 

The characterizing uncertainty module implements the function of characterizing 

uncertainty in emission factors or activity factors based upon the database and based upon the 

number of units of each technology group that are in the internal database.  The characterizing 

uncertainty module uses data from the interim database to get distribution information including 

distribution type and the parameters of the fitted distributions for emission and activity factors.  

Uncertainty estimates of the mean emission and activity factors, and other statistics, are 

calculated using the numerical method of bootstrap simulation.  The results of the uncertainty 

analysis are displayed in the GUI.  Because this module uses data from the internal database, 

which may contain a relatively large number of power plant units compared to an individual state 

emission inventory, the estimates of uncertainty in the mean and in other statistics are typically a 

lower bound on the range of uncertainty in the same statistic applicable to an emission inventory 

that includes a smaller number of power plant units. 

The emission inventory module has the following functions: (1) it allows the user to visit 

the user database and append, modify or delete user input data; (2) it characterizes the 

uncertainty in emission factors and activity factors based on user project data; (3) it calculates 

uncertainty in the emission inventory; and (4) it calculates the key sources of uncertainty from 
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among the different technology groups.  The estimates of uncertainty in the emission inventory 

module are based upon the number of power plant units of each technology group specified by 

the user.  For example, although there may be 36 power plant units of a given type in the internal 

database, the user may have only 10 units of that type in the emission inventory of interest.  The 

uncertainty in the emission and activity factors for that technology group will be estimated based 

upon a sample size of 10, not 36.   

The GUI is a general control module in AUVEE, and it makes all independent modules, 

platforms and databases work together.  In addition, the GUI is a bridge which links user input to 

internal implementation within AUVEE, and provides model output to the user.  Through the 

GUI, the user can build or open a project, enter a database of emission sources, implement user’s 

choice of parametric distributions, view or save all calculation results, and manage the message 

passing between the different modules.  

CASE STUDY:  A PROBABILISTIC EMISSION INVENTORY FOR A SINGLE STATE 

The case study is based on the number of units of each technology group in a single state.  

The specific case study was selected because the number of units representing each of four 

power plant technologies is dissimilar.  Specifically, the following numbers of units are included 

in the case study: 

- 19 tangential-fired boilers with no NOx controls (T/U) 

- 11 tangential-fired boilers using Low NOx Burners and overfire air option 1(T/LNC1) 

- 12 dry bottom wall-fired boilers with no NOx controls (DB/U) 

- 3 dry bottom wall-fired boilers using low NOx burners (DB/LNB) 

No units of the technology group with dry bottom turbo-fired boilers and overfire air are 

present in the example state.  The case study is based upon a 6-month period.  Parametric 

probability distributions were fit to each activity and emission factor required for the inventory.  

The results are summarized in Table 1, estimated by AUVEE using Maximum Likelihood 

Estimation (MLE).  Examples of the fitted distributions for the example of one technology group 

are shown in Figures 2, 3, and 4 for an emission factor, a capacity factor, and a heat rate, 

respectively.  The goodness-of-fit was evaluated by comparing confidence intervals of the fitted 

distribution, obtained from bootstrap simulation, with the data.  For example, the lognormal 

distribution fitted to the heat rate data agrees well with the tails of the distribution of the data.  

There are some deviations of the fitted distribution from the data in the regions of the 40th to 70th 

percentiles.  However, more than half of the data are enclosed by the 50 percent confidence 

interval and almost 100 percent of the data are enclosed by the 95 percent confidence interval.  

On average it is expected that 95 percent of the data should be enclosed by the 95 percent 

confidence interval if the data are consistent with the assumed probability distribution model, 

and some random variation of this percentage is also expected.  Therefore, in this case, the fitted 

distribution is deemed to be an adequate match with the data. 
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Table 1.   Summary of 6-Month NOx Emission and Activity Factors and of Fitted Distributions 

for Five Power Plant Technology Groups 

Technology 

Group 
Input Variables 

Summary of Data Fitted Distributions 

No. of 

Data 

Points  

 

Mean 

 

Standard 

Deviation 

Dist.    

Type 

1st   

Para.* 

2nd     

Para.* 

DB/U Heat Rate 87 11,190 1,440 Lognormal 9.31 0.122 

DB/U Capacity Factor 87 0.59 0.18 Beta 3.92 2.71 

DB/U NOx Emission 

Factor 

87 291 90 Weibull 324 3.84 

DB/LNB Heat Rate 98 10,570 800 Lognormal 9.26 0.0774 

DB/LNB Capacity Factor 98 0.69 0.14 Beta 7.02 3.18 

DB/LNB NOx Emission 

Factor 

98 176 42 Gamma 17.2 10.2 

T/U Heat Rate 136 10,860 1,340 Lognormal 9.28 0.113 

T/U Capacity Factor 136 0.62 0.15 Beta 6.08 3.79 

T/U NOx Emission 

Factor 

136 196 55 Gamma 5.24 0.27 

T/LNC1 Heat Rate 41 10,600

0 

850 Normal 10,600 848 

T/LNC1 Capacity Factor 41 0.69 0.14 Beta 6.53 2.94 

T/LNC1 NOx Emission 

Factor 

41 163 37 Gamma 19.0 8.58 

  DTF/OFA Heat Rate 6 10,420 910 Lognormal 9.24 0.058 

DTF/OFA Capacity Factor 6 0.71 0.09 Beta 0.711 0.087 

DTF/OFA NOx Emission 

Factor 

6 191 19 Gamma 99.5 1.91 

 1st parameter is the mean for Normal distribution, the geometric mean for the Lognormal 

distribution, scale parameter for he Gamma and the Beta distribution, and the shape 

parameter for the Weibull distribution. 

 2nd parameter is the standard deviation for the Normal distribution, the geometric standard 

deviation for the Lognomal distribution, and the shape parameter for Weibull, Gamma and 

Beta distributions. 

 

The 50 percent confidence interval for the beta distribution fitted to the capacity factor 

data encloses 61 percent of the data, and 100 percent of the data are enclosed by the 95 percent 

confidence interval. Similarly, for the gamma distribution fit to the emission factor data, 57 

percent of the data are enclosed by the 50 percent confidence interval and 100 percent of the data 

are enclosed by the 95 percent confidence interval.  These comparisons indicate a good fit in 

either case. 

Figures 2 through 4 reveal substantial inter-unit variability in emissions for the example 

technology group.  The range of heat rate variability is from 9,100 BTU/kWh to 13,600 

BTU/kWh.  The capacity factor varies from 0.30 to slightly over 0.98.  The emission factor 

varies from 80 g/GJ to 300 g/GJ.  Thus, in some cases, the range of variability is almost a factor 

of four from the low to high end of the range.   

In the example inventory, there are only 3 units of the specific technology group 

represented in Figures 2, 3, and 4.  Thus, although there are a total of 98 such units represented 

in the database, the uncertainty estimate specific to the example inventory must account for the 

fact that there are only 3 units in the inventory.  An assumption is that the 3 units are a random 

sample of the population of all units of the same technology group.  Therefore, the uncertainty in 
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the mean emission rate among the 3 units should be based upon a sample size of 3 and not a 

sample size of 98.  Bootstrap simulation with bootstrap samples of 3 synthetic data points was 

used to quantify uncertainty.   

An example of results for uncertainty based upon the number of units actually in the 

inventory is shown in Figure 5 for the case of the NOx emission rate.  In comparing Figure 5 with 

Figure 4, it is apparent that the confidence intervals are much wider, corresponding to the smaller 

sample size.  With a smaller number of units, the range of uncertainty is larger.   

 

Figure 2.  Probability Band for Distribution Fitted to Example Heat Rate Data for                    

Dry Bottom Wall-fired Boilers Using Low NOx Burners (n=98) 
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Figure 3.  Probability Band for Distribution Fitted to Example Capacity Factor                      

Data for Dry Bottom Wall-fired Boilers Using Low NOx Burners (n=98) 
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Figure 4.  Probability Band for Distribution Fitted to Example NOx Emission Rate                 

Data for Dry Bottom Wall-fired Boilers Using Low NOx Burners (n=98) 
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Figure 5. Probability Bands Based Upon Number of Units in the Emission Inventory 

(n=3) for the Example of NOx Emission Rate. 
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Table 2.  Summary of Uncertainty Results for the Emission Inventory Case Study 

Technology 

Group 

2.5th 

Percent 
Mean 

97.5th 

Percentile 

Random Error (%)a 

Negative Positive 

DB/U 21,700 31,100 40,100 -30 +29 

DB/LNB 5,600 8,100 11,400 -31 +39 

T/U 15,300 20,400 28,600 -25 +40 

T/LNC1 19,800 25,200 31,100 -21 +23 

Total 71,800 84,800 99,900 -15 +18 
a Results shown are the relative uncertainty ranges for a 95 percent probability range, 

given with respect to the mean value. 

 

Figure 6 shows the sampling distribution of the mean emission inventory for the selected 

technology group.  In this case, the emissions are from 3 units.  The mean value of the inventory 

is 8,100 tons of NOx emitted over a 6-month period.  The 95 percent probability range for this 

distribution is from 5,600 tons to 11,400 tons, or almost a factor of two range of uncertainty.  

Expressed on a relative basis, the 95 percent probability range for uncertainty is minus 31 

percent to plus 39 percent with respect to the mean value. The range of uncertainty is slightly 

asymmetric, reflecting the fact that many of the inputs have skewed distributions.  The range of 

uncertainty reflects the large amount of inter-unit variability in the inputs to the inventory and 

the small sample size (n=3).   

The overall uncertainty in the total emission inventory, inclusive of all four technology 

groups considered, is shown in Figure 7.  The estimated mean emission rate is 84,800 tons of 

NOx emitted in a 6-month period.  The 95 percent probability range is enclosed by emissions of 

71,800 tons and 99,900 tons.  This is a range of – 13,000 tons to + 15,100 tons, or -15 percent to 

+18 percent, with respect to the mean.  The asymmetry of the 95 percent probability range is a 

result of skewness in many of the input assumptions among the four technology groups.   

A summary of the uncertainty results for the entire emission inventory is given in Table 

2.  The absolute range of uncertainty for the total inventory is greater than the absolute range of 

uncertainty for the selected technology group, but the relative range of uncertainty is smaller.   
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Figure 6.  Uncertainty in a 6-Month NOx Emission Inventory for an Individual             

Technology Group Comprised of 3 Units. 
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Figure 7. Uncertainty in a 12-Month NOx Emission Inventory Inclusive of Four          

Technology Groups. 
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Figure 8.  Relative Importance of Uncertainty in Emissions from Individual Technology      

Groups with Respect to Overall Uncertainty in the Total Emission Inventory 
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A property of probabilistic simulations is that, in general, it is not possible to sum the 

values of selected percentiles of each model input to obtain an estimate of the same percentile of 

the model output.  For example, the 2.5th percentile of the total emission inventory, which is 

71,800 tons, does not correspond to a sum of the 2.5th percentile of each of the four technology 

groups.  However, for linear models, the sum of the means is usually the same as the mean of the 

sum, unless there is a correlation among the model inputs.17   

Figure 8 shows the relative importance of uncertainty in emissions from individual 

technology groups with respect to overall uncertainty in the total emission inventory. Of the four 

technology groups, the dry-bottom, uncontrolled (DB/U) group has the strongest correlation with 

uncertainty in the total emission inventory, with a correlation coefficient of approximately 0.7.  

In contrast, the controlled dry-bottom boiler group (DB/LNB) has a correlation of approximately 

0.18.  Thus, any imperfections in the fitted distributions for the latter technology group are not 

likely to contribute significantly to errors in the estimated overall uncertainty.  The sensitivity 

analysis results imply that the most effective way to reduce uncertainty in the overall emission 

inventory is to begin by reducing uncertainty in the estimated emissions from DB/U technology 

group. 

CONCLUSIONS 

This project has demonstrated a prototype software environment for calculation of 

probabilistic emission inventories.  The prototype enables a user to visualize, in the form of 

empirical probability distributions, the data used to develop the inventory.  Therefore, the user is 

able to observe the range of variability in the data.  This is sharp contrast from typical emission 

inventory work, in which point estimate values of emission factors are used to calculate a single 

estimate of the inventory.  The range of variability in the example datasets was shown to be 

large.  For example, the range of inter-unit variability in emission factors for one technology 

group was a factor of approximately three from the smallest to the largest value in the dataset. 
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Although it is not possible to quantify all sources of uncertainty, it is important to 

quantify as many sources of uncertainty as is practical.  The example case study demonstrates 

that the range of uncertainty attributable to random sampling error is substantial.  For individual 

technology groups, the range of uncertainty is as large as approximately plus or minus 30 

percent, and for the total inventory the range of uncertainty is approximately plus or minus 15 

percent.  These ranges of uncertainty are likely to be substantially larger than measurement 

errors in the data for this particular source category.  The case study is based upon a relatively 

large sample of continuous emission monitoring data.  Therefore, it is likely that the data used in 

the case study are reasonably representative of actual emissions among the population of units 

for the technology groups studied.  In this case, it is likely that random sampling error is the most 

important contributor to overall uncertainty.  The specific results will differ for other emission 

source categories. 

It is now possible to have a high degree of uncertainty regarding recent actual emissions 

at power plants equipped with CEM equipment.  However, it is not possible to have certainty 

regarding what the emissions will be at a future time, whether in the near or distant future.  In 

estimating distant future emissions, an additional refinement that may be needed in the case 

study would be to consider changes in capacity factor and the effects of capacity expansion.  For 

relatively short term future estimates (e.g., a year or two into the future), the methodology 

employed as is may provide a reasonable estimate of absolute emissions.  However, the relative 

range of uncertainty estimated using the methods presented here are likely to be indicative of the 

relative range of uncertainty in a future emission inventory, unless there is a large shift in the 

relative contributions of different technology groups to the total inventory. 

As part of future work, it is recommended that possibility for correlation in the 

distribution of uncertainties in mean capacity factors among different units be studied in more 

detail.  Although such correlation is not expected to be significant for 6-month or 12-month 

averages, it will be useful to verify whether this is the case. 

In addition to quantifying the substantial range of uncertainty in the inventory, the case 

study demonstrates the capability to identify key sources of uncertainty in the inventory.  The 

largest contribution to uncertainty comes from one technology group.  Therefore, resources could 

be focused on collecting more or better data for the most sensitive technology group.  

Knowledge of key sources of uncertainty can also aid in identifying where it is not necessary to 

target additional data collection.  For example, even though there were some discrepancies in the 

fit of parametric distributions to some of the data as shown in Figure 2 that particular technology 

group does not contribute substantially to uncertainty in the overall inventory.  Therefore, there 

would not be a large benefit associated with improving the characterization of uncertainty for 

that particular input. 

The quantification of uncertainty has many important implications for decisions.  For 

example, it enables analysts and decision makers to evaluate whether time series trends are 

statistically significant or not.  It enables decision makers to determine the likelihood that an 

emissions budget will be met.  Inventory uncertainties can be used as input to air quality models 

to estimate uncertainty in predicted ambient concentrations, which in turn can be compared to 

ambient air quality standards to determine the likelihood that a particular control strategy will be 

effective in meeting the standards.  In addition, using probabilistic methods, it is possible to 

compare the uncertainty reduction benefits of alternative emission inventory development 

methods, such as those based upon generic versus more site-specific data.  Thus, the methods 
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presented here allow decision makers to assess the quality of their decisions and to decide on 

whether and how to reduce the uncertainties that most significantly affect those decisions. 
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