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ABSTRACT 

Quantitative methods for characterizing variability and uncertainty were applied to case 

studies of emission factors for stationary natural gas-fueled internal combustion engines.  NOx 

and Total Organic Carbon (TOC) emission data sets for lean burn engines were analyzed.  Data 

were available for uncontrolled engines and for engines with pre-combustion chamber (PCC) and 

"clean burn" NOx control approaches.  For each data set, parametric probability distributions 

were fit to the data to represent inter-engine variability in emissions.  Bootstrap simulation was 

used to quantify uncertainty in the fitted distribution and in the mean emission factor.  Some 

methodological challenges were encountered in analyzing the data.  For example, in one 

instance, only five data points were available, with each data point representing a different 

market share.  Therefore, an approach was developed in which a parametric distribution was 

fitted to population-weighted data.  The range of uncertainty in mean emission factors ranges 

from as little as approximately plus or minus 10 percent to as much as minus 60 percent to plus 

80 percent, depending on the pollutant, control technology, and nature of the available data.  The 

wide range of uncertainty in some emission factors emphasizes the importance of recognizing an 

accounting for uncertainty in emissions estimates.  The skewness in some uncertainty estimates 

illustrates the importance of using a numerical simulation approach that does not impose 

restrictive symmetry assumptions on the confidence interval for the mean.  In this paper, the 

probabilistic analysis method, the data sets, the results of the analyses, and key findings and 

recommendations are presented.   

 

INTRODUCTION 

The use of quantitative methods for characterizing variability and uncertainty applied to 

emission factors is demonstrated here.  Emission factors are a key input to emission inventories.  

Emission inventories, in turn, are widely used for regulatory and air quality management 

purposes.  However, the uncertainty in emission factors, and in emission inventories, is typically 

not known.  Therefore, it is not known, in many cases, how robust regulatory or management 

decisions are with respect to uncertainty.  If management decisions are based upon point 

estimates of emissions that are biased, or if the range of uncertainty in emissions is much larger 

than any predicted change in emissions resulting from an air quality management strategy, then 

the decision-making process for developing management strategies will be ineffective. This 

paper focuses on one of the fundamental starting points for characterizing uncertainty in 

emission inventories, which is the emission factor.  The case study application is stationary 

natural gas-fueled reciprocating engines. 
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Variability and Uncertainty 

Emissions vary from one specific source to another (e.g., one engine to another) and for a 

given source because of variations in design, feedstock compositions, ambient conditions, and 

other operating conditions.  Thus, there is typically some inherent variation in emissions that is 

revealed by measurements on multiple specific emission sources or by repeated measurements of 

the same emission source. 

 

Uncertainty refers to lack of knowledge regarding the true but unknown value of a 

quantity, such as the true but unknown population average emission factor for a particular source 

category.1,2  The average emission factor is subject to uncertainty for several possible reasons:  

(1) random sampling error; (2) measurement errors; (3) non-representativeness of available data; 

and/or (4) lack of information.  There is also the possibility that there are data entry mistakes.  In 

this paper, the main focus is on quantification of random sampling error, which is the statistical 

random fluctuation in any statistic estimated from a finite random sample of data.  Any statistic 

estimated from a random sample of data, such as the mean, is itself a random variable. The 

probability distribution for a statistic is referred to as the sampling distribution.  The sampling 

distribution can be used to develop confidence intervals for a statistic.  In this paper, sampling 

distributions are used as a method for quantifying uncertainty associated with random sampling 

error.  

 

Estimation of Uncertainty in Emission Factors 

Current practice in emission inventory work is typically to ignore uncertainty.  As a 

surrogate for uncertainty estimates, some emission factors are accompanied by data quality 

ratings.3   A method for qualitatively rating emission inventories, known as the Data Attribute 

Rating System (DARS) has been developed by EPA.4  Some sources of uncertainty are difficult 

to quantify, such as non-representativeness of a data set.  Therefore, there will always be a role 

for qualitative statements regarding non-quantifiable sources of uncertainty.  However, 

qualitative rating systems should be used in combination with quantitative approaches. 

 

There is growing recognition of the importance of quantitative uncertainty analysis in 

environmental modeling and assessment.  For example, the U.S. EPA has developed guidelines 

for Monte Carlo analysis of uncertainty.5  The National Academy of Sciences has repeatedly 

recommended to EPA that quantitative analysis of uncertainty be included in a variety of 

applications.6,7 The Intergovernmental Panel on Climate Change (IPCC) has recently issued good 

practice guidance for quantifying uncertainty in emission inventories.8 

 

As part of previous and ongoing work, research is underway to develop and demonstrate 

improved methods for quantifying uncertainty in emission inventories.  In the area of mobile 

source emissions, for example, Kini and Frey developed quantitative estimates of uncertainty 

associated with  Mobile5b emission factor model estimates of light duty gasoline vehicle base 

emissions and speed-corrected emissions.9  Pollack et al. performed a similar study on 

California's EMFAC7G highway vehicle emission factor model.10  Frey et al. revisited the earlier 

analysis of Mobile5b emission factor estimates to include uncertainties associated with 

temperature corrections.11  Frey and Bammi estimated uncertainty in the emission factors for a 
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non-road source category of lawn and garden equipment.12  A recent National Research Council 

report has recommended that the U.S. Environmental Protection Agency (EPA) and others 

"should undertake the necessary measures to conduct quantitative uncertainty analyses of the 

mobile source emissions models."6   

 

In the area of power plant emissions, Frey and colleagues have developed uncertainty 

estimates for emissions of hazardous air pollutants and for NOx emitted by coal-fired power 

plants.11,13,14,15  In addition, as part of recent work, methods for quantification of variability and 

uncertainty have been developed, evaluated, and demonstrated, including the use of Monte Carlo 

simulation and bootstrap simulation.16,17,18       

 

In this paper, quantitative methods for characterizing variability and uncertainty are 

applied to the source category of stationary natural gas-fueled reciprocating engines.  These 

engines are commonly used, for example, to power natural gas pipeline compressors.  In some 

airsheds, such as for Charlotte, NC, this type of emission source is estimated to be a significant 

contributor to the total NOx emission inventory. 

 

OVERVIEW OF METHODS FOR PROBABILISTIC ANALYSIS OF EMISSION 

FACTORS 

Both analytical methods and numerical methods are used for quantification of uncertainty 

in an unknown quantity.19  Numerical methods are typically more robust in that they can be 

applied to a wide range of problems without restrictive assumptions regarding symmetry for 

probability distributions.  In this work, traditional Monte Carlo simulation is employed in 

uncertainty analysis.  The Monte Carlo approach was developed by Stanislaw Ulam and John 

von Neumann to simulate probabilistic events for military purposes in 1946.20  Monte Carlo 

simulation is basically a numerical method for randomly generating sample values from a 

specified population distribution.   

 

Characterizing Variability in a Data Set 

A first step in characterizing variability in a data set is to obtain all relevant data and 

assess the quality of the data.  A judgment must be made that the data are a reasonably 

representative sample of the population of interest, and that the data are free of significant errors.  

This step is the same regardless of whether one is developing a point estimate or a probabilistic 

estimate.  This is perhaps the most critical step in the analysis. 

 

A second step is to visualize the data to obtain insight regarding the range, central 

tendency, and skewness of the data, and any other noteworthy characteristics.  A method often 

employed for this purpose is to plot the data as an empirical cumulative distribution function 

(CDF).  Methods for plotting empirical CDFs are described by Cullen and Frey and by Frey et 

al.11,19  

 

One limitation of an empirical CDF is that there is no extrapolation beyond the range of 

observed data.  Thus, for small data set, the real range of variability may be underestimated 

because variation in samples observed may be much narrower than that in the actual population.  

Fitting parametric probability distributions has benefits over the use of empirical distribution in 
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that they can provide a plausible means for extrapolating to the unobserved tails of the unknown 

population distribution.21  Parametric distributions also tend to have an underlying theoretical 

basis.  In this study, Normal, Lognormal, Gamma, and Weibull distributions are considered.  

After choosing a candidate parametric distribution that is judged to offer the best fit to the data, 

the next step is to estimate its parameters based upon the observed data.  There are several 

methods for estimating distribution parameters.19  No method is necessarily the best one to use in 

all situations.  Both Maximum Likelihood Estimation (MLE) and Method of Matching Moments 

(MoMM) were used in this work. 

 

Characterizing Uncertainty 

In this section, a bootstrap simulation method is presented for characterizing uncertainty 

in any statistic estimated based upon a fitted parametric distribution.   

 

The objective of bootstrap simulation is to numerically simulate sampling distributions 

for statistics.  The main assumption in bootstrap simulation is that the probability distribution 

estimated from the observed sample of data is the best estimate of the true but unknown 

population distribution.  Given an assumed population distribution, the effects of random 

sampling from the population distribution are simulated.  Specifically, a synthetic data set, 

known as a bootstrap sample, is sampled at random from the assumed population distribution 

using Monte Carlo simulation.  The bootstrap sample has the same number of data points as the 

original sample.  The values of the samples in the bootstrap sample are one possible alternative 

random realization of the original data set.  During bootstrap simulation, a large number of 

bootstrap samples are simulated, typically 500.  For each bootstrap sample, one or more statistics 

of interest may be calculated, such as the mean.  A statistic calculated from a bootstrap sample is 

referred to as a bootstrap replication of the statistic, and there will be random variation in the 

bootstrap replications.  The 500 values of the bootstrap replicates of the statistic can be used to 

describe a sampling distribution of the statistic.  From the sampling distribution, a confidence 

interval for the statistic can be inferred.  

 

A key advantage of bootstrap simulation for estimation of confidence intervals is that no 

restrictive assumptions are required regarding normality, as is required to develop confidence 

intervals using common analytical methods.  Thus, bootstrap simulation can be used on a wide 

variety of problems.  The confidence intervals represent lack of knowledge regarding the true 

values of the statistics being estimated.   

 

NATURAL GAS-FUELED RECIPROCATING ENGINES  

Natural gas-fueled reciprocating engines are commonly used to provide mechanical shaft 

power to drive compressors, such as those used in natural gas pipelines.22,23  These engines are 

classified based upon three major designs:  (1) 2-cycle lean burn, also referred to as 2-stroke lean 

burn (2SLB); (2) 4-stroke lean burn (4SLB); and (3) 4-stroke rich burn (4SRB).  Natural gas-

fueled engines typically emit nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons 

(HC). Control technologies for natural gas-fueled engines are primarily aimed at reducing NOx 

emissions.  Emission factors for natural gas-fueled engines have been published by EPA in 

report number AP-42.3  Until recently, emission factors for this source category were based upon 

an October 1996 update to AP-42.22  However, a more recent update was published in July 
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2000.23  The July 2000 version is based upon a different data set than the October 1996 version.  

The October 1996 data set involves market-share weighted data for NOx and TOC uncontrolled 

emission factors, whereas the July 2000 data are assumed to be equally-weighted. To 

demonstrate a range of analysis methods, both sources of data are included in this study.  This 

study focuses on NOx and TOC emission factors, because these two pollutants are the most 

significant precursors to tropospheric ozone formation. 

 

October 1996 Version of Natural Gas-fueled Engine AP-42 Emission Factors 

The analysis of the October 1996 version is focused upon lean burn engines, because 

these engines have high emission rates and are present in an airshed (for Charlotte, NC) that is 

the subject of a case study in related work.  The specific emission sources for which uncertainty 

in average emission factors were quantified include:  (1) 2SLB uncontrolled engines; (2) 2-stroke 

"clean burn" controlled lean burn engines (2SCB); (3) 2-stroke pre-combustion chamber (PCC) 

controlled lean burn engines (2SPCC); and (4) 4SLB uncontrolled engines.  For other control 

options, apparently only one data point was used by EPA to estimate emission factors.24  

Therefore, other control options were not analyzed statistically. 

 

For the 2SLB and 4SLB uncontrolled engines, only average emissions data for selected 

manufacturers were available.  In addition, the market share for each manufacturer, in terms of 

the percentage share of installed capacity, was reported.  As an example, the data set for 2SLB 

engines is given in Table 1.  No market share is available for the “Clean Burn” and PCC 

controlled engines. 

 

The uncontrolled engine emission factors were assigned a data quality rating of “A” by 

EPA because they judged that the quantity and quality of the original test data were good and 

generally well documented, and that the engine types and population profile were known.  The 

Clean Burn and Pre-Combustion Chamber controlled engine emission factors were rated as “C,” 

based on a judgment that the test data were of “A” quality, but that the amount of data was 

limited.24  

 

July 2000 Version of Natural Gas-fueled Engine AP-42 Emission Factors 

After the October 1996 version was published, EPA initiated efforts to gather additional 

emissions data for combustion sources, including stationary reciprocating reciprocating engines. 

EPA decided to base the emission factors for natural gas-fueled engines on original emissions 

source test data.25  The July 2000 emission factors are only for uncontrolled engines.  However, 

the uncontrolled NOx emission factors have been refined by estimating emissions separately for 

two different load ranges.  EPA has made publicly available the data used to develop the new 

emission factors in a Microsoft Access database at the EPA TTN web site.26  A summary of the 

average emission factor calculated from the data base and of the emission factors reported in AP-

42 is given in Table 2.  In some cases, it was possible to exactly reproduce the EPA emission 

factor.  However, in other cases it was not possible, and the differences could not be reconciled 

because of lack of complete documentation by EPA and its contractor regarding how the 

emission factors were actually calculated. 
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Two alternative procedures were used to estimate emission factors from the database.  In 

one procedure, referred to in Table 2 as “ungrouped,” each data point in the database was given 

equal weight, even if some of the data represent repeated measurements of the same engine.  In 

the other procedure, referred to as "grouped," all data for a single engine were averaged, and only 

the average value for each engine was used to calculate an average emission rate.  Of the six 

emission factors shown in Table 2, it appears that for two of them (2SLB NOx, both load ranges) 

it is possible to exactly recalculate the AP-42 emission factor from the available data using the 

"ungrouped" approach.  For both of the TOC emission factors it is possible get a very close 

approximation to the AP-42 value using the ungrouped approach.  For the remaining two 

emission factors (4SLB NOx, both load ranges), it is not possible to get a reasonable 

approximation to the AP-42 value using either approach.  After consultation with EPA, it was 

decided to remove test data collected by Colorado State University from the data set for the 

4SLB case, since the CSU test results were more than an order-of-magnitude less than that for 

the other tests and may have been from a controlled, rather than an uncontrolled, engine.  After 

removing the CSU tests, the ungrouped average is calculated to be 4.40 lb/mmBTU and the 

grouped average is calculated to be 4.02 lb/mmBTU.  The grouped average is very close to the 

AP-42 value of 4.08 lb/mmBTU for 4SLB engine NOx emission during 90-105% load operation.   

 

The emission factors of  the uncontrolled 2SLB engines were assigned a quality rating 

“A,” and the emission factors of the uncontrolled 4SLB engines were assigned a quality rating of 

“B.”22  However, no explanations regarding the specific basis for these ratings are provided.   

 

QUANTIFICATION OF VARIABILITY AND UNCERTAINTY IN EMISSION 

FACTORS 

Two sets of case studies are presented.  In the first case study, each data point is assumed 

to be an equally likely random sample from the total population of emission sources.  This type 

of case study applies to all of the emission factor data except for the October 1996 version 

uncontrolled 2SLB and 4SLB engine data, which are weighted by market share and described 

separately.  

  

Equally-Weighted Randomly Sampled Data 

In many cases, emission factor data are available for a sample of engines, representing 

different manufacturers, engine models, engine ages, and applications.  In developing an 

emission factor, a judgment is made to group data from various specific engine measurements 

together because of similarities in engine design and operation.  For example, expert judgment 

could be used as a basis for estimating the market share of each particular make and model of 

engine.  In the absence of information, a common default assumption is to assume equal weight 

among the available data.  Of course, this assumption could, and is likely to, be wrong.  At the 

same time, there may not be an empirical basis to justify other assumptions.  Key assumptions in 

an analysis should be evaluated when interpreting the results of the analysis.  Therefore, although 

equal weight for each data point is assumed, later this assumption will be critiqued. 

 

Another factor that must be considered is how to handle replicate data.  The available 

data sets include, in some cases, repeated measurements on the same engine.  For example, in the 

case of the July 2000 data set for uncontrolled NOx emissions from 4SLB engines operated at 90 
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percent to 105 percent load, there are 25 data points available from measurements on only 5 

engine models.  Repeated measurements on the same engine provide an indication of intra-

engine variability in emissions.  However, in calculating an emission factor, the objective is to 

quantify inter-engine variability in emissions for purposes of estimating the population 

distribution for variability within the source category.  Therefore, it is necessary to prepare a data 

set representative of inter-engine variability.  The approach taken here is to use an average value 

for repeated measurements of an individual engine as the representative emission rate for that 

engine, and to analyze the inter-engine variability in which each engine is represented by either 

one data point, if only one measurement is available, or the average of the available data, if 

repeated measurements are available. 

 

The inter-engine variability in emissions for the uncontrolled 4SLB engines is shown 

graphically in Figure 1.  Of the several types of parametric distributions evaluated, the Gamma 

distribution estimated using MoMM offered the best fit to the four data points.  Bootstrap 

simulation was used to estimate confidence intervals for the CDF of the fitted parametric 

distribution. With only four data points, the confidence intervals are relatively wide.  For 

example, the 95 percent confidence interval for the median, or 50th percentile of the distribution, 

is from 2.3 lb/106 BTU to 5.7 lb/106 BTU, which is nearly as wide as the range of the observed 

data.  The mean emission estimate obtained from the fitted distribution is 4.1 lb/106 BTU.  The 

95 percent confidence interval for the mean is from 2.5 lb/106 BTU to 6.1 lb/106 BTU, 

corresponding to a range of minus 39 percent to plus 49 percent.  

 

An important characteristic of the confidence intervals of the mean, or of any other 

statistic, estimated based upon bootstrap simulation is that they need not be symmetric.  With a 

very small data set of only four data points, and with a positive skewness in the data set, the 

confidence interval on the mean is expected to be positively skewed.  Therefore, the asymmetry 

of the confidence interval for the mean NOx emission factor from 4SLB engines is expected.  

Because of the small number of data points and the wide range of variability of the data, the 

confidence interval is expected to be relatively wide, as it is in this case. 

 

The adequacy of the fitted distribution can be evaluated, at least in part, by identifying 

what proportion of the data are contained with the confidence intervals of the CDF.  On average, 

if the fit is a good one, half of the data should be enclosed within the 50 percent confidence 

interval, 90 percent of the data should be enclosed within the 90 percent confidence interval, and 

95 percent of the data should be enclosed within the 95 percent confidence interval.  In Figure 1, 

three of the four data points are contained within the 50 percent confidence interval, and all of 

the data are enclosed by the 90 percent confidence interval.  This suggests, though cannot prove, 

that the Gamma distribution is an acceptable fit to the data. 

 

Unequally-Weighted Data 

In this section, an example case study is presented based upon emissions data that are not 

equally weighted.  These data are from Table 1 for uncontrolled 2SLB engines, based upon the 

October 1996 version of AP-42.  The five emissions values are shown in Figure 2 as an empirical 

CDF, along with three parametric distributions that have been fit to the data.   
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Because each of the five emissions values has a different market share-based weight, the 

method for fitting distributions to the data had to be modified compared to when data have equal 

weight.  The approach taken here was to use 100 synthetic data points as a basis. The use of 100 

basis data points allows for emission values to occur repeatedly in proportion to their market 

share.  A portion of these 100 data points were assigned the emission factor associated with an 

engine, in proportion to the market share of that engine.  For example, the Clark engines have 36 

percent of the market share; therefore, 36 of the 100 basis data points were assigned the Clark 

engine emission value of 2.64 lb/106 BTU. Parametric distributions were fit to the 100 basis data 

points.  

 

The comparison of the fitted distributions in Figure 2 suggests that the Weibull 

distribution may provide the best fit to the data.  The Weibull distribution provides the best fit in 

the central portion of the distribution, and appears not to have as "heavy" of a tail at the upper 

end of the distribution.  For comparison purposes, both the Weibull and Lognormal distributions 

are included in the bootstrap simulation analyses. 

 

During bootstrap simulation, each simulated data point has equal weight.  However, 

because the parametric distributions were fit to market share-weighted data, the shape of the 

parametric distributions reflects the frequency with which data should be sampled in different 

emission ranges.  For example, the steepness of the fitted CDF in the range from approximately 2 

lb/106 BTU to 3 lb/106 BTU means that there is a high probability that random samples of 

emissions will occur in this range, corresponding to the three engines that have the largest 

combined market share.  In contrast, there is comparatively little probability that emissions 

values will be sampled for the two engines that, together, comprise only five percent of the total 

market share.   

 

The results of the bootstrap simulation with the Lognormal distribution are given in 

Figure 3.  It appears that the 95 percent confidence interval encloses the empirical distribution of 

the data.  However, the confidence intervals are very wide, and there appear to be biases in the 

fit.  For example, the central range of the empirical distribution coincides with the high side of 

the confidence intervals, while the lower and upper tails of the empirical distribution coincide 

with the low side of the confidence interval.  The apparent biases in the fit, and the wideness of 

the intervals, suggest that the Lognormal is not a particularly good distribution to use in this case. 

 

The results of the bootstrap simulation with the Weibull distribution are given in Figure 

4.  These results imply more consistency between the assumed parametric distribution and the 

empirical distribution of the original data.  In particular, the empirical distribution appears to be 

reasonably well enclosed by the 90 percent confidence interval, and the width of the confidence 

interval is much narrower compared to the Lognormal case, without compromising the apparent 

goodness-of-fit.  Therefore, the Weibull distribution is selected over the Lognormal distribution 

as a more appropriate basis for estimating uncertainty in the mean.  The choice of parametric 

distribution influences the estimated confidence interval for the mean.  The 95 percent 

confidence interval for the mean is 2.14 to 3.38 lb/106 BTU based upon the Lognormal 

distribution, 2.25 to 3.26 lb/106 BTU based upon the Gamma distribution, and 2.39 to 2.99 lb/106 
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BTU based upon the Weibull distribution.  Of these three, the Weibull distribution leads to the 

narrowest estimate of the confidence interval. 

 

In order to compare the influence of the market-share factor on the quantification result.  

This data set is also analyzed as equally weighted data.  The result of bootstrap simulation with 

fitted Weibull distribution is given in Figure 5.  Comparing Figure 5 with Figure 4, if unequally-

wieghted data are treated equally, the mean of the bootstrap means is 1.95 lb/106 BTU, which is 

28 percent smaller than the value if treated unequally; the 95 percent confidence interval is 1.22 

to 2.75 lb/106 BTU, which 160 percent wider than if the data are treated unequally; the lower 

bound and the upper bound of 95 percent confidence interval is 49 percent smaller and 8 percent 

smaller, respectively, than the values if treated unequally.  The two engines with low emission 

comprise only 5 percent of total market share.  If they are improperly given the same weight as 

the other three engines, there will be an underestimation of the overall mean emission.  

Therefore, properly reporting the market share along with the emission factor data is important 

for accurately estimating the emission factors.   

 

Summary of Probabilistic Estimation Results for AP-42 October 1996 Version and July 

2000 Version Emission Factors 

Table 3 gives quantified uncertainties in NOx emission factors for natural gas engines.  

Table 4 gives quantified uncertainties in TOC emission factors for natural gas engines.  The 

probabilistic estimates presented in Table 3 and 4 are based on October 1996 AP-42 data.  The 

quantified uncertainties in NOx emission factors for different operation loads based on July 2000 

AP-42 data are presented in Table 5.  Table 6 gives quantified uncertainties in TOC emission 

factors based on July 2000 AP-42 data.  The summary tables indicate that the 95 percent range of 

uncertainty in the mean emission factor ranges from as low as approximately plus or minus 10 

percent to as high as minus 80 to plus 180 percent.  The range of uncertainty is influenced by a 

combination of the sample size and the range of variability in the data.  Smaller sample sizes 

and/or larger inter-engine variability in the data will tend to contribute to wider ranges of 

uncertainty in the estimated mean emission factor.   

 

CONCLUSIONS 

This paper demonstrates the successful application of quantitative probabilistic analysis 

to emission factor case studies, based upon the example of stationary natural gas-fueled 

reciprocating engines.  The method employed is based upon characterization of uncertainty 

based upon random sampling error.  The method includes:  (1) development of a database; (2) 

visualization of the data using empirical CDFs; (3) evaluation of alternative parametric 

probability distributions fitted to the data; (4) bootstrap simulation to characterize confidence 

intervals in the fitted CDF; (5) selection of a judged best fit distribution based upon bootstrap 

simulation results; and (6) quantification of uncertainty in the mean based upon the bootstrap 

sampling distribution for the mean. 

 

The probabilistic method was applied to several different types of analyses, including:  

(1) quantification of inter-engine variability in emissions and uncertainty in the mean for 

unequally weighted data points; and (2) quantification of inter-engine variability in emissions 

and uncertainty in the mean for equally weighted data points.  The range of inter-engine 
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variability in emissions suggests that the weights assigned to each engine emission estimate can 

significantly affect the estimate of the mean emission rate.  Thus, the assumption of equal 

weighting of emissions data, as is often made, is likely to be a strong assumption in many cases 

and, therefore, can be a significant factor biasing emission factor estimates. 

 

The estimates of uncertainty in the mean are often asymmetric, indicating that skewness 

regarding observed variability in inter-engine emissions can lead to skewness in the estimate of 

uncertainty in the mean.  Conventional analytical methods based upon normality assumptions 

can lead to errors in the uncertainty estimate.  The mean values estimated from the probabilistic 

analysis differ in some cases from the mean values estimated directly from the data because 

parametric probability distributions allow for interpolation within the range of observed data and 

for extrapolations beyond the range of observed data. For small data sets, it is unlikely that the 

observed sample of data truly includes the minimum and maximum possible values.  On this 

basis, extrapolation is warranted.   

 

Although three parametric distributions were typically evaluated, most often the Weibull 

distribution was found to provide a good fit to the data.  The Weibull may take on many shapes, 

including negatively skewed, symmetric, or positively skewed.  Furthermore, the Weibull 

distribution tends to be less "tail-heavy" than the other two, and often provides a better empirical 

fit to the data for these reasons.  

 

The quantitative analysis demonstrated here focuses on one important source of 

uncertainty.  The range of uncertainty associated with random sampling error was found to be as 

large as minus 80 percent to plus 180 percent, and in most examples was greater than plus or 

minus 20 percent. Some other sources of uncertainty, such as potential lack of representativeness 

of the test cycles used in the measurements, or potential lack of representativeness of the sample 

of engines, are difficult to evaluate quantitatively.  Therefore, it is recommended that qualitative 

methods for identifying sources of uncertainty also be used.  However, there is not a direct 

relationship between the qualitative data rating and the range of uncertainty in the emission 

factor.  Therefore, we do not recommend that data quality ratings be used to make inferences 

regarding quantitative ranges of uncertainty. 

 

A significant difficulty encountered in this study was the lack of documentation of the 

calculation methods for the July 2000 AP-42 emission factors. Complete documentation should 

include enough information so that others can reproduce the calculations and results.  Therefore, 

we recommend that EPA report the complete calculation method used for each emission factor.  

With the growing recognition of the importance of quantitative uncertainty analysis, it will be 

important for EPA and others to routinely report data regarding variability and uncertainty in 

emission factors. 
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Figure 1. Comparison of Empirical Cumulative Distribution of Average Uncontrolled 

4-SLB Engine, 90-105% load, NOx Emissions, fitted Weibull distribution, and 

Bootstrap Simulation Confidence Intervals, Based Upon July 2000 AP-42 Data. 

 

 

 

Figure 2. Empirical Distribution and Fitted Parametric Distributions for Market-

Share Weighted NOx Emissions Rates for Uncontrolled 2-Cycle Lean Burn 

Engines Based Upon October 1996 AP-42 Data 
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Figure 3. Comparison of the Empirical Distribution Bootstrap Simulation Results Based Upon a 

Lognormal Distribution for Market-Share Weighted NOx Emissions Rates for Uncontrolled 2-

Cycle Lean Burn Engines Based Upon October 1996 AP-42 Data 
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Figure 4. Comparison of the Empirical Distribution Bootstrap Simulation Results Based Upon a 

Weibull Distribution for Market-Share Weighted NOx Emissions Rates for Uncontrolled 2-Cycle 

Lean Burn Engines Based Upon October 1996 AP-42 Data 
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Figure 5. Comparison of the Empirical Distribution Bootstrap Simulation Results Based Upon a 

Weibull Distribution, Market-Share Weighted NOx Emissions Rates, Treated as Unweighted 

data, Uncontrolled 2-Cycle Lean Burn Engines Based Upon October 1996 AP-42 
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Table 1. Emissions data for Uncontrolled Natural-Gas Fueled 2-Stroke Lean Burn Engines.21 
 

MAKE 

NOx Emissions 

(lb/106 BTU) 

TOC Emissions 

(lb/106 BTU) 

Ratio of total installed 

capacity (%) 

Ajax 1.132 4.318 4 

Clark 2.636 1.703 36 

CB 3.009 1.164 47 

Fairbanks-Morse 0.556 1.220 1 

Worthington 2.466 1.618 12 

Weighted average 2.710 1.539  

 

 
Table 2. Comparison Between EPA NOx Emissions Database and Documentation of AP-42 

Emission Factors for Uncontrolled 2SLB and 4SLB Engines Based Upon July 2000 Version of 

AP-42.22  
 

 

Engine 

Type 

 

 

Pollutant 

 

 

Engine Load 

Average Calculated from 

Databasea 

(lb/106 Btu) 

AP-42 

Emission 

Factor 

(lb/106 Btu) 

 

 

Comments on 

Documentationb 

 

 

 

2SLB 

 

 

 

NOx 

 

90 to 105%  

 

3.17 (ungrouped), 

3.05 (grouped) 

 

3.17 

34 test data are used 

to develop AP-42 

emission factor 

 

< 90%  

 

1.94 (ungrouped), 

2.15 (grouped) 

 

1.94 

57 test data are used 

to develop AP-42 

emission factor 

 

TOCc 

Any load  

1.61(ungrouped), 

1.49 (grouped) 

 

1.64 

24 test data are used 

to develop AP-42 

emission factor 

 

 

 

4SLB 

 

 

NOx 

 

90 to 105%  

 

2.22 (ungrouped) 

3.26 (grouped) 

 

4.08 

25 test data are used 

to develop AP-42 

emission factor 

 

< 90%  

 

0.739 (ungrouped)  

1.44 (grouped) 

 

0.847 

13 test data are used 

to develop AP-42 

emission factor 

 

TOCc 

Any load  

1.42(ungrouped), 

1.13 (grouped) 

 

1.47 

37 test data are used 

to develop AP-42 

emission factor 
a Two average values were calculated from the available data in the database from the EPA TTN Web Site.  The 

"Ungrouped" averages involve taking the average of all emissions tests for all engines.  The "Grouped" averages 

involve first calculating the average emissions for engines that were tested more than once, and then calculating the 

average among all engines.  For example, if we have 25 test data from 10 engines, the ungrouped average is based 

upon 25 equally weighted values.  In contrast, the grouped average would be based on the 10 average values for 

each different engine. 
b The test identification numbers used in the on-line database are documented in Reference 22. 
c Emission factors are reported on a TOC basis in AP-42. While, they are reported as Total Hydrocarbons (THC) in 

database.20,23   
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Table 3. 95 Percent Confidence Interval for Mean NOx Emissions for Natural Gas-fired 

Reciprocating Lean Burn Engines, Based on October 1996 AP-42 Data. 
Engine and 

Emissions Control 

Technology 

No. 

of 

Data 

Mean 

of 

Dataa 

AP-42 

Emission 

Factora 

 

Fitted 

Distrib.d 

Mean of 

Bootstrap 

Sample Meansa 

 

Relative 95% CI on 

Meanb 

2SLB, Uncontrolled 5 2.710 2.710 Weibull 2.714 -11.8% to +9.36% 

2SLB, Clean Burn 11 0.834 0.834 Lognormal 0.835 -14.1% to +15.4% 

2SLB, PCCc 20 0.850 0.850 Lognormal 0.840 -23.7% to +28.5% 

4SLB, Uncontrolled 4 3.225 3.225 Weibull 3.170 -27.2% to +30.8% 
aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results. cPCC=Pre-Combustion Chamber 
dMLE is used for parameter estimation 

 

Table 4. 95 Percent Confidence Intervals for Mean TOC Emissions for Natural Gas-fired 

Reciprocating Lean Burn Engines, Based on October 1996 AP-42 Data. 
Engine and 

Emissions Control 

Technology 

No. 

of 

Data 

Mean 

of 

Dataa 

AP-42 

Emission 

Factora 

 

Fitted 

Distrib. d 

Mean of 

Bootstrap 

Sample Meansa 

 

Relative 95% CI on 

Meanb 

2SLB, Uncontrolled 5 1.539 1.539 Weibull 1.549 -36.0% to +42.7% 

2SLB, Clean Burn 11 0.767 0.767 Weibull 0.770 -56.1% to +67.5% 

2SLB, PCCc 20 1.756 1.756 Weibull 1.750 -17.1% to +18.3% 

4SLB, Uncontrolled 4 1.261 1.261 Weibull 1.278 -47.6% to +55.7% 
aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results. cPCC=Pre-Combustion Chamber 
dMLE is used for parameter estimation 

 

Table 5. 95 Percent Confidence Intervals for Mean Uncontrolled NOx Emissions for Natural 

Gas-fired Reciprocating Lean Burn Engines, Based on July 2000 AP-42 Data. 
Engine and Load 

Range 

AP-42 

Emission 

Factora 

No. 

of 

Data 

No. of 

Engines 

 

Fitted 

Distrib. d 

Mean of 

Bootstrap 

Sample Meansa 

 

Relative 95% CI on 

Meanb 

2SLB, 90% to 105% 3.17 34 11 Weibull 3.05 -24% to +24% 

2SLB, < 90% 1.94 24 11 Weibull 2.18 -41% to +46% 

4SLB, 90% to 105% 4.08 12 4 Gamma 4.06 -39% to +49% 

4SLB, < 90% 0.847 13 5 Weibull 1.81 -80% to +180% 
aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results.  
dMLE is used for 2SLB engine, MoMM is used for 4SLB engine  

 

Table 6. 95 Percent Confidence Intervals for Mean TOC Emissions for Natural Gas-fired 

Reciprocating Lean Burn Engines, Based on July 2000 AP-42 Data. 
Engine and Load 

Range 

AP-42 

Emission 

Factora 

No. 

of 

Data 

No. of 

Engines 

 

Fitted 

Distrib. d 

Mean of 

Bootstrap 

Sample Meansa 

 

Relative 95% CI on 

Meanb 

2SLB, Uncontrolled 1.64 57 14 Weibull 1.45 -16% to +18% 

4SLB, Uncontrolled 1.47 37 4 Gamma 1.12 -45% to +57% 
aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results.  
dMLE is used for 2SLB engine, MoMM is used for 4SLB engine  

 

 


