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INTRODUCTION

The increasing capability of computer processing has facilitated the development and use of
software to simulate chemical and other industrial processes. Steady state processes are well
served in this area by process simulators such as FLOWTRAN, PROCESS, CHEMSHARE, and ASPEN.
Several companies have in-house simulation packages catering to their plant needs. However,
while computer simulation models have grown in sophistication, certain capabilities important to
research and development planning, system design, and economic analysis still remain to be
developed.

The conventional simulation models or simulators typically employ a Fortran code which
produces deterministic (point estimate) results for a particular set of input assumptions. Such an
approach can be overly simplistic, however, often resulting in the addition of large safety or
"fudge" factors to accommodate the reality of uncertainty in equipment or process -design.
Chemical plants are usually faced with uncertain conditions during their operation. These
uncertainties can arise from variations either in external parameters, 'such as the quality of feed
streams, or from internal process parameters such as transfer coefficients, reaction constants, and
physical properties. If the technology is new, there are additional uncertainties due to limited
performance data.

The ability to analyze uncertainty is especially important in the context of ongoing research and
development, where technical and economic parameters for individual processes and system
designs are not well established. Uncertainties also are important in comparing advanced system
designs with "baseline" systems reflecting currently commercial technology. To analyze
uncertainty, the capability to perform sensitivity analysis through a series of multiple runs is
usually available. Typically, however, only one or two parameters at a time are varied in a
simulation framework which may contain a large number of independent variables. Thus,
important interactions or cases may be overlooked. Although larger number of cases may be run
as part of a sensitivity study, the volume of output that is generated makes results cumbersome or
difficult to interpret and/or display. Even where many cases are analyzed, sensitivity analysis
still provides no information as to the likelihood of different outcomes. In short, the process




analysis of real systems requires both stochastic and deterministic modeling capabilities.

Freeman and Gaddy (1975) and some earlier workers [e.g., Lashmet and Szczepanski (1974),
Kittrell and Watson (1966)] applied probabilistic techniques for the calculation of overdesign
factors. Error analysis and modeling of a reactor using statistical techniques is reported by
Atherton et al.(1975). U.S. federal agencies have also committed to the continued development
and use of probabilistic studies for risk analysis. One of the earliest large-scale studies was the
nuclear reactor safety study generally known as the "Rasmussen Report" [Rasmussen et
al.(1975)].

The problem of flexibility of design and the concept of a "flexibility index" have been discussed
in recent years [Grossmann et al.(1983), Morari (1983), Pistikopoulos and Grossmann (1988)] .
Application of optimization techniques to obtain flexibility of operation under uncertainty is the
objective of most of these studies. Use of discrete simulation languages like GPSS for batch
processing scheduling is another problem which has received considerable attention in the
current literature [Schultheisz and Sommerfeld (1988)]. Batch processing involves both state
and time events. The stochastic modeling capability based on queuing theory is used to solve the
problem of scheduling of time events in batch processing.
A}

Though uncertainty analysis techniques are gaining attention in the literature, none of the well-
known process simulators have the capability to handle uncertainties systematically. This paper
discusses a new generalized stochastic modeling capability built around the ASPEN process
simulator and illustrates its use for a complex process.

THE STOCHASTIC SIMULATION MODEL

The approach adopted involves adding a stochastic modeling capability for uncertainty analysis
to the public version of the ASPEN simulator developed for the U.S. Department of Energy
(DOE) (MIT 1982). To implement the stochastic modeling capability, ASPEN's modular nature
(consisting of unit operation modules or blocks) has been utilized. The stochastic simulation
module is based on the public domain programs of Iman et al. [Iman and Shortencarier (1984),
Iman et al.(1985)]. A new unit operation block, called STOCHA, has been added to the ASPEN
unit operation module library. Initially, this new block was added in the form of a user block.
More recently, it has been added as a permanent unit operation block in ASPEN. The structure
of the block and it's use are briefly described below. Details are provided elsewhere [Diwekar
(1989)].

The unit operation block, STOCHA, characterizes the uncertainty in model input parameters in
terms of probability distributions, and analyzes their effect on selected output variables. To link
STOCHA to the ASPEN flowsheet, two Fortran blocks are needed. This type of stochastic




3

modeling capability can be used for systematic probabilistic analysis. The stochastic modeling
approach involves:

Specifying the uncertainties in key input parameters in terms of probability distributions;
Specifying the correlation structure of any inter-dependent parameters;

Sampling the distributions of the specified parameters in an iterative fashion;
Propagating the effects of uncertainties through the process flowsheet; and

Applying graphical and statistical techniques to analyze the results.
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The software provides a set of eight types of probability distributions for characterizing input
variables (normal, lognormal, uniform, loguniform, modified uniform, modified loguniform,
beta, and triangular distributions). There is also the ability to specify any user-defined
distribution. The stochastic block assigns user-specified distributions to the flowsheet input
parameters, then uses either Latin Hypercube sampling (LHS) or random sampling to pass the
sampled values of each uncertain variable to the flowsheet. After a flowsheet simulation is run,
the output variables of interest are collected. The simulation is then repeated for a new set of
samples selected from the probabilistic input distributions. A new Fortran block is used to
control the cycling of the stochastic block, and another Fortran block, called STCTAIL, is used
to access and assign samples to model parameters.

After all samples or observations have gone through this cycle for a specified number of times
(typically 20 to 100 or more, depending on the accuracy sought by the user), the stochastic block
analyzes the output. The output options include cumulative and non-cumulative probability
density functions of input and output parameters, plus multivariate correlation coefficients which
measure the effects of input uncertainties on the output results.

Figure 1 shows the use of the stochastic block for uncertainty analysis of a flowsheet. The cycle
for uncertain variables consists of: (a) the stochastic block, STOCHA, for assigning parameter
uncertainty distributions; (b) the Fortran block, STCTAIL, for accessing variables and assigning
sampled values; and (c) the Fortran recycle block, STCREC, for data output collection and
recycling.

If there are convergence loops nested within the flowsheet of a stochastic cycle, and if entire
flowsheet calculations are involved in the analysis, it may be necessary to use an additional
Fortran cycle control block to mark the beginning and end of the convergence cycle.
Appropriate software also has been implemented to handle this case, as described by Diwekar
(1989).




STATISTICAL TERMS AND HEURISTICS

The uncertainties or variability in engineering models can be expressed in terms of probabilistic
distributions. The probability distributions show the range of values the variable could take and
the likelihood of occurrence of each value within the range. Thus, the distributions define the
rule for describing the probability measures associated with the values of a random (uncertain)
variable. Probability distributions may be described in their entirety as cumulative distribution
functions, or by selected parameters, such as fractiles or moments (e.g. mean and variance).
More complete review of these methods may be found in Diwekar and Rubin (1989).

Specifying a Probability Distribution

To accommodate the diverse nature of uncertainty, the different distributions available within the
stochastic block and their features are shown in Figure 2. The type of distribution chosen for an
uncertain variable reflects the amount of information available. The uniform and loguniform
distributions represent an equal likelihood of a value lying anywhere within a specified range, on
cither a linear or logarithmic scale, respectively. The modified forms of these distributions,
uniform* and loguniform*, allow several intervals of the range to be distinguished.

A normal (Gaussian) distribution reflects a symmetric but varying probability of a parameter
value being above or below the mean value. In contrast, lognormal and triangular distributions
are skewed such that there is a higher probability of values lying on one side of median than the
other. A beta distribution provides a wide range of shapes and is a very flexible means of
representing variability over a fixed range. Finally, user-specified distributions can be used to
represent any arbitrary characterization of uncertainty, including chance constraints (i.e., fixed
probabilities of discrete values).

Sampling

There are two sampling methods available with the stochastic unit operation block: random
Monte Carlo sampling and Latin Hypercube sampling (LHS). In the LHS method, a distribution
is divided into intervals of equal probability, and one sample is taken at random from within each
interval. LHS guarantees that the values from the entire range of the distribution are sampled in
proportion to the probability density of the distribution, whereas in traditional Monte Carlo
methods samples are taken at random. In LHS, the order of sampling is random, but the entire
distribution is sampled. Because the distributions are sampled over the entire range of probable
values, the number of samples required to adequately represent a distribution is less than for
Monte Carlo simulations. The procedure to select samples using Latin Hypercube sampling is
described in Diwekar and Rubin (1989). Since LHS is generally more efficient than Monte
Carlo, the primary reason for providing the latter method is that the statistics may be harder to
compute with LHS. With standard LHS, the sample scenarios and outputs are random but they
are not completely independent. Thus, statistics for estimating the precision of the results (e.g.,




confidence intervals) may be underestimated, though the level of precision remains higher.

The sampling procedure (LHS or random sampling) is applied to each input variable. The final
step in sampling involves pairing the selected values for correlated variables. This pairing is
done either randomly or using the restricted technique of Iman and Conover (1982), where user-
specified correlations are used. If a correlation structure is not specified by the user, then the
model computes a measure for detecting large pairwise correlations. This measure is known as
the variance inflation factor (VIF), defined as the largest element on the diagonal of the inverse
of the correlation matrix. The VIF appears in the model output report when the user requests the
input correlation matrix to be printed.

Choosing Sample Size

The unit operation block STOCHA provides a measure of the precision of an estimate of the
cumulative distribution function in terms of a confidence interval. The o confidence interval
for Yy, the p-th fractile, is given by (yj, yx), where yj is the lower end point of the interval, yx
is the upper end point, and

i=np-cdnp(l-p, k=np+c/ np(l-p) ¢))

where n is the sample size and c is the deviation enclosing probability ¢ of the unit normal
distribution (obtained by inverting the normal distribution function, which is approximated by
the multiplication of two polynomials). [Griffiths and Hill (1985)]. From the values of the
confidence interval precision, the sufficiency of the number of samples, n, can be judged.

Sensitivity Analysis

Once the input samples have passed through the flowsheet and all the sample runs are completed,
the stochastic block can be used to quantify the sensitivity of an output to each input parameter.
Two closely related but different measures are presented. These are partial correlation
coefficients and standardized regression coefficients.

From the sampling data it is possible to construct an approximate regression model which relates
an output parameter y; to the input parameters x;:

Y= b+ D b @
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The constants b; are ordinary regression coefficients which are easily influenced by units of
measurement. This problem can be circumvented if the regression model can be written using
the transformed variables x* and y* given by:

- Py (y-Hy)
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and a regression model in the standardized form:

y* = D bx @
]

The coefficients in this model are called standardized regression coefficients and they provide a
direct measure of the relative importance of the input variables. The accuracy of this model can

be judged by the value of Ry2 , the coefficient of determination, which is:

2 Z(?i- py)?
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where § is the calculated value of y; using the regression model.
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The partial correlation coefficients provides a measure of the linear relationship between the

output and input variables. If the correlation is denoted by Iryjl , then the maximum absolute

value can be used to identify the input variables having the strongest input relationship. When
nonlinear relationships are involved, the standardized correlation coefficients and partial
regression coefficients are calculated based on ranks rather than absolute value.

ILLUSTRATIVE RESULTS

To illustrate the type of results obtainable with the new ASPEN stochastic block, one specific
Integrated Coal Gasification Combined Cycle Power Plant flowsheet is considered.

A Complex Flowsheet: Integrated Gasification Combined Cycle Power Plant

The Illustrative example analyzes an integrated gasification combined cycle (IGCC) power
system, which is a promising new approach for the clean and efficient use of coal for electric
power generation. At the present time, however, there is still little experience with JGCC
systems on a commercial scale. The uncertain nature of the limited performance and cost data
for first generation systems, coupled with uncertainties associated with alternative process
configurations, suggests a strong need for a systematic analysis of uncertainties in IGCC process




design.

ASPEN performance models developed for IGCC systems by the U.S. Department of Energy
(DOE) include different gasifier designs and gas stream cleanup systems, including models of
fixed bed, fluidized bed and entrained bed gasifiers, plus cold gas and hot gas cleanup systems
[Stone (1985)]. These ASPEN models typically consist of approximately 80 unit operation
blocks and eight flowsheet sections. While the bulk of the models are comprised of generalized
unit operation blocks (e.g., pumps, heat exchangers, pressure vessels, etc.), there are a number of
Fortran blocks and design specification blocks which are specific to IGCC systems, or to a
particular flowsheet. There are also user-specified models to handle coal properties, and a
Fortran block used as a summary report writer.

Use of the probabilistic modeling capability is illustrated using a simulation model based on a
conceptual design for a commercial IGCC plant using the Kellogg-Rust-Westinghouse (KRW)
ash agglomerating pressurized fluid-bed gasifier with conventional cold gas cleanup [Bechtel
(1983)]. ASPEN performs a steady-state computer simulation of this process. The simulation
flowsheet contains 83 unit operation blocks (i.e., models of unit operations such as pumps,
reactors, and compressors), plus user routines to calculate ash enthalpy and coal decomposition.
The eight plant sections which are simulated are: gasification, solids separation, gas cleaning
and cooling, gas turbine, effluent water prirr?ary treatment system, Claus plant, Beavon-Stretford
unit, and the steam cycle.

The KRW-IGCC simulation model was developed by DOE to provide accurate mass and energy
balances, and to track major environmental species (SOx, NOx, and particulates). The overall
simulation runs in 200 seconds of CPU time on a Vax-3200 computer workstation. Table 1
shows a summary of results obtained for a case study of a 678 MW system using deterministic
input parameters [Stone (1985), Fluor (1985)].

For this example, six input variables in the KRW flowsheet are treated as uncertain. Table 2
shows the deterministic values of these parameters as well as the assumed uncertainties, given as
probability distributions. The distributions assigned to the variables in Table 2 are based on data
available from the current literature, and reflect the variability in judgments of different design
teams in selecting parameter values for similar IGCC systems. For this example, most input
parameters have been assigned a skewed triangular distribution while the uncertainty of one
parameter is represented by a uniform distribution. All parameters are taken to be independent,
as supported by the technical literature.

The effect of these uncertainties on selected model output parameters is shown in Figures 3 and
4 in the form of cumulative probability distributions (CDFs) based on 200 samples. The
information obtained from these distributions and associated statistical data (not shown here)




provide insights not available from conventional deterministic analysis (e.g., the range of
uncertainty of an output variable of interest; the most likely value; the range encompassed by a
given confidence level; the chances that the value will be below or above some certain level).

For the KRW IGCC flowsheet, Figure 4 shows the effect of input uncertainties on the overall
plant efficiency. This result shows only a 3% chance of achieving the expected (deterministic)
performance, with a 5% chance that the efficiency will be below 29.22% or above 36% (which
defines the 90 percent confidence level). Combinations of independent input parameter values
leading to high thermal efficiency can be found from a more detailed examination of the
probabilistic results. Thus, a probabilistic analysis also can help identify globally optimum
conditions for IGCC system designs.

Apart from uncertainty analysis results, the stochastic modeling framework also displays the
effect of different input variables on output results in the form of correlation coefficients. For
example, the sensitivity of the overall plant efficiency based on the correlation coefficients found
for this case study (Table 3) are, in descending order of importance: (1) fraction of Carbon
going to gasifier, (2) gas turbine pressure ratio, (3) gas turbine firing temperature, (4) recycle
split, (5) fraction of Sulfur going to gasifier, and (6) fraction of H2S in Acidgas.

CONCLUSION N

This paper has described a new stochastic modeling capability for the ASPEN chemical process
simulator. The stochastic modeling capability can be used to evaluate the performance of any
chemical plant which can be formulated using the simulator. Applications of this capability to a
complex flowsheet also was illustrated. The generalized stochastic modeling capability is useful
for performance analysis, economic analysis, comparisons of different technologies,
determination of overdesign factors, error and sensitivity analysis, risk analysis, feasibility
studies, identification of process R&D priorities, and research management and planning. The
methodology is universal and can be easily extended to other simulators or modeling packages.
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TABLE 1. KRW FLUIDIZED-BED IGCC POWER PLANT SYSTEM
SUMMARY

*%% GASIFIER CONDITIONS ***
Coal Flow Rate: 0.567703E+06 lbs/hr
Oxygen Flow Rate: 0.386038E+06 1bs/hr
Steam Flow Rate: 0.346299E+06 lbs/hr
Gasifier Pressure: 465.0 psia
Gasifier Temperature: 1850 F

*4% MS7000 GAS TURBINE CONDITIONS #***
Fuel Flow Rate: 0.874669E+06 lbs/hr
Air Flow Rate: 0.899985E+07 lbs/hr
Steam Flow Rate: 0.262401E+06 lbs/hr

Fuel LHV: 5185.4 Btu/lb, 272.9 Btu/scf
Fuel HHV: 5600.9 Btu/lb, 294.8 Btu/scf
Firing Temperature: 2300.0 F
Combustor Exit Temperature: 2425.0 F
Turbine Exhaust Temperature: 1160.4 F
Thermal Efficiency (LHV) : 0.3484
Generator Efficiency: 0.9850

*** STEAM TURBINE CONDITIONS ***
Superheated Steam Flow Rate: 0.164041E+07 1bs/hr
Superheated Steam Temperature: 984.7 F
Expanded Steam Quality: 0.9516
Generator Efficiency: 0.9850

**x% POWER PRODUCTION SUMMARY ***
Gas Turbine: 0.463128E+09 Watts
Steam Turbine: 0.290632E+09 Watts
Compressors: -0.731738E+06 Watts
Pumps: -0.359428E+07 Watts
Oxygen Plant: -0.717608E+08 Watts
Plant Total: 0.677673E+09 Watts

sk ok sk sk ok sk ok ok sk ok ok sk sk ok ok ok sk sk sk skok sk ki sk sk sk skeok skok ok sk sk sk sk skosk skok sk ok

PLANT THERMAL EFFICIENCY (HHV) = 0.3623
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TABLE 2. ASSUMED UNCERTAINTY IN MODEL INPUT PARAMETERS

Parameter Nominal Value Distribution Range (Mode)
(Units)

Fraction of Carbon

going to gasifier 0.95 Uniform 0.75-0.95
Fraction of Sulfur

going to gasifier 0.99 Triangular 0.8 -0.99 (0.8)
Recycle split 0.17 Uniform 0.12-0.17

Gas turbine pressure ratio 12 Triangular 12 - 13.5 (13.5)
Gas turbine firing temp. 2300 Uniform 2200 - 2300
Fraction of H2S in Acidgas 0.935 Uniform 0.935-0.99
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TABLE 3. SENSITIVITY ANALYSIS RESULTS IN TERMS OF PARTIAL
CORRELATION FOR OVERALL PLANT EFFICIENCY

Input Parameter Partial Correlation Coefficient
Fraction of Carbon going to gasifier -1.0

Gas turbine pressure ratio 0.878

Gas turbine firing temperature 0.850

Recycle split -0.648

Fraction of Sulfur going to gasifier -0.463

Fraction of H2S in Acidgas -0.098
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Figure 2. Available Distribution Functions for Model Input Parameters
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Figure 3. Cumulative Probability Distributions of Selected Output Parameters
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Figure 4. Cumulative Probability Distribution of Total Plant Efficiency
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