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ABSTRACT

Technical and economic uncertainties are not rigorously
treated or characterized in most preliminary cost and
performance estimates of advanced power system designs.
Nor do current design methods rigorously address the issues
of design under uncertainty. However, process costs and
other important quality measures, such as controllability,
safety, and environmental compliance, largely depend on the
process synthesis stage. This conceptual design stage
involves identifying the basic flowsheet structures from a
typically large number of alternatives. This paper describes
recent developments in on-going research to develop and
demonstrate advanced computer-based methods for dealing
with uncertainties that are critical to the design of advanced
coal-based power systems. Results are presented illustrating
the use of these new modeling tools for the environmental
control design of an advanced energy system based on an
integrated gasification combined cycle (IGCC) for electric
power generation.

INTRODUCTION

Increasing environmental awareness and regulations have
placed new requirements on process design for advanced
power systems, and increased the need for more
sophisticated simulation and design tools to examine
pollution prevention options. Conventional process models
now in use are largely based on a deterministic framework
used for simulation of a specified flowsheet. An important
shortcoming of these models is their inability to analyze
uncertainties rigorously. Uncertainty analysis capability is
especially important in the context of advanced energy
systems, since available performance data typically are
scant, accurate predictive models do not exist, and many
technical as well as economic parameters are not well
established.

Though design under uncertainty has received

considerable attention in the chemical engineering literature
during the past few years, a generalized framework for
analyzing uncertainty systematically has gnly recently been
developed around a chemical process simulator (Diwekar
and Rubin, 1991). In earlier work, we developed a
generalized capability to assign probabilistic values to
model input parameters, and to sample these distributions to
obtain probabilistic results using Latin Hypercube sampling
methods. That capability was built around the ASPEN
process simulator (MIT, 1982) developed for the U.S.
Department of Energy (USDOE). This stochastic simulation
capability has been used successfully to evaluate different
configurations of integrated gasification combined cycle
(IGCC) systems, an emerging technology for the clean and
efficient use of coal for electric power generation. In
particular, we have applied probabilistic methods to evaluate
the performance, cost, and emissions from IGCC systems,
compare alternative systems under conditions of uncertainty,
and quantify the benefits from targeted research and
development (Frey and Rubin 1992a, 1992b; Frey, et al,
1994).

More recently, we have enhanced this framework to
include a generalized capability to deal with process
synthesis and process optimization. We also have developed
a capability to address stochastic optimization and
stochastic programming problems, with applications to
advanced energy systems. Sequential modular simulators,
such as ASPEN and PROV/II, have grown in sophistication
over the years and are widely used in the chemical industries
to solve complex problems with rigorous process modeling.
The USDOE also uses the public version of ASPEN to model
a variety of advanced energy systems. Therefore, it was
desirable to build the new process synthesis and stochastic
optimization capabilities around such simulators. The new
capabilities described in this paper again have been built
around the public version of ASPEN. First we describe the
methodological basis for these new modeling capabilities,



then we present an illustrative case study of their application
to the design of environmental controls for an advanced
power system.

METHODOLOGY FOR OPTIMIZATION UNDER
UNCERTAINTY

Problems reported in the literature on process design under
uncertainty generally are divided into two categories:
stochastic optimization, and stochastic programming.
Stochastic optimization problems include the “here and
now” problems involving expected value minimization,
chance constrained optimization, and design for optimal
flexibility. These problems all require that at each iteration
of the optimization solution method some probabilistic
representation of the objective function and constraints are
optimized. On the other hand, the “wait and see,”
“flexibility index,” and multiperiod optimization problems
involve solving a deterministic optimization problem for
each of several “scenarios,” so that one gets a probabilistic
representation of optimal solutions. These type of problems
fall under the category of stochastic programming, namely
the effects of uncertainties on optimal design. We describe
here the new modeling capability developed for these two
general categories of optimization problems under
uncertainty.

The Optimizer

The goal of a classical optimization problem is to
determine the values of decision variables x that maximize
some aspect of a deterministic model, represented by the
objective function Z, while ensuring that the model operates
within limits established by equality constraints h and
inequality constraints g. A generalized statement of this
problem is given by the following equation:

Optimize Z = z(x) ¢}

X
subject to h(x) =0 2)
g(x) <0 3

where x is a decision variable vector.

A generalized iterative solution procedure for this
traditional deterministic optimization problem is illustrated
schematically in Figure 1. As seen in the figure, the
optimizer invokes the model with a set of values for the
decision variables x. The model simulates the flowsheet and
calculates values of the objective function and constraints.
This information is utilized by the optimizer to calculate a
new set of decision variables. This iterative sequence is
continued until the optimization criteria are satisfied. This
deterministic optimization capability has been implemented
in the public version of ASPEN. A new unit operation block
(called OPTM) has been developed which solves the
nonlinear optimization problem (NLP) described above.

Recent advances in constrained nonlinear optimization
techniques provide improved methods for solving large-scale
flowsheet problems. The most popular of these methods are
generalized reduced gradient (GRG) and successive quadrat-
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FIGURE 1. SCHEMATIC OF THE
DETERMINISTIC OPTIMIZATION FRAMEWORK

ic programming (SQP), and their variants. Among
generalized reduced gradient methods, the most widely used
algorithms are GRG2 and MINOS (Gill et al., 1981). Most
literature on large-scale optimization favors the SQP method
because the GRG2 algorithm requires convergence of
equality constraints at each iteration. Historitally, the GRG
strategy has been considered to be the less efficient mode of
optimization (Biegler, 1983), hence, the GRG2 algorithm is
not well suited for the large-scale optimization problems we
are proposing to address. On the other hand, MINOS does not
require convergence of equality constraints, and is best
suited for optimization problems with linear constraints.

SQP is the most widely used technique for large-scale
nonlinear optimization for chemical processes, which
typically involve highly nonlinear models. In SQP, at each
iteration the problem is approximated as a quadratic program -
where the objective function is quadratic and the constraints
are linear. Similar to linear programming, the special
features of a quadratic objective function are exploited to
solve the problem more efficiently. The quadratic
programming sub-problem is solved for each step to obtain
the next trial point. This cycle is repeated until the optimum
is reached.

In the ASPEN implementation the NLP optimization
block, OPTM, generates decision variable sets using the
SQP method (Biegler and Cuthrell, 1985). This set is passed
to the flowsheet using another new Fortran block
(OPTTAIL). After the simulation run, the values of the
objective function and constraints are calculated and passed
back to the optimization block. The iterations stop when the
best improvement to the process for the defined objective
function and constraints is found.

As described below, this new NLP optimization capability
can be coupled with the stochastic modeling capability
developed previously, to solve a broad range of stochastic
optimization and stochastic programming problems
encountered in practice. The following sections describes
this functionality.
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Stochastic Optimization

For advanced energy conversion technologies and other
processes, the uncertainties associated with process or model
input parameters can substantially affect both the
performance and cost of those systems. Methods for process
design under uncertainty thus become essential. As
uncertainty is a broad concept, it is possible — and often
useful — to approach it in several different ways. One rather
general approach, which has been described earlier and
successfully applied to a wide variety of problems, is to
assign a probability distribution to the various uncertain input
parameters to a model (Diwekar and Rubin, 1991). The
generalized stochastic optimization problem, where the
decision variables and uncertain parameters are separable,
can then be viewed as:

Optimize P1(Z) = Pl(z(x,u)) 4)

X
subject to P2(h(x,u)) =0 5)
P3(g(x,u) < 0 6)

where u is the vector of uncertain parameters and the P
represents the probabilistic functional. For problems where
the goal is to minimize an expected value this reduces to:

1

B = |

o FWdpw )

This function can be calculated by sampling the function
and calculating the expected value of the samples.

stamp F(u)
E(F()) = ——— (8)
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FIGURE 3. SCHEMATIC OF THE
STOCHASTIC PROGRAMMING FRAMEWORK

On the other hand, for chance constrained optimization
problems, where the constraints are represented in terms of a
probability of exceeding a certain value, the probabilistic

e

functional is represented by: »
Optimize P1(z(x,u)) = E(F(u)) ()]
X
subject to P(h(x,u) > B) < P¢ 10

where Equation 10 is a chance constraint.

It is apparent from the above discussion that unlike the
deterministic optimization problem, in stochastic
optimization one has to consider the probabilistic functional
of the objective function and constraints. The generalized.
treatment of such problems is to use probabilistic or
stochastic models instead of a deterministic model inside the
optimization loop. Figure 2 represents the generalized
stochastic optimization problem solution procedure, where
the deterministic model in Figure 1 is replaced by an
iterative stochastic model.

This stochastic optimization capability can also be used to
achieve off-line quality control. In off-line quality control,
the sensitivity of the design to the sources of variation is
reduced at the design stage to make the controller design
easier. One such approach based on the concept of Taguchi's
parameter design method has been illustrated using the
stochastic optimization capability above (Diwekar and
Rubin, 1994). This approach involved minimizing the
variance of the objective function instead of the expected
value.

Stochastic Programming

In contrast to the stochastic optimization problems,
stochastic programming problems concern the effect of
uncertainties on optimal design. This involves deterministic
decisions at each random stage or random sample, which is
the same as solving multiple deterministic optimization




problems. This formulation can be represented as:

Optimize Z = z(x,u*) (11)

X
subject to h(x,u*) = 0 (12)
g(x,u*) <0 (13)

where u* is the vector of values of uncertain variables
corresponding to a particular sample. This optimization
procedure is repeated for each sample of uncertain variables
u and a probabilistic representation of outcomes is obtained.
Figure 3 represents the generalized solution procedure,
where the deterministic problem shown in Figure 2 forms the
inner loop and the stochastic sampling forms the outer loop.
This procedure is implemented in the ASPEN simulator by
simply interchanging the position of stochastic block,
STOCHA, and the optimization block, OPTM. In this way,
one can solve almost all the problems in the stochastic
optimization/programming literature.

METHODOLOGY FOR PROCESS SYNTHESIS

The alternatives for process design and environmental
control often are numerous and may involve a very large
search space. Selection of the best alternatives can offer the
potential for significantly reducing costs and/or improving
performance. Therefore, there is a strong need for “systems”
research to identify the best ways of configuring advanced
energy systems and other complex processes. The current
state of process synthesis techniques involves: (a) the
heuristic approach which relies on intuition and engineering
knowledge, (b) the physical insight approach which is based
on exploiting basic physical principles, and (c) the
optimization approach which wuses mathematical
programming techniques. Here we describe a newly
developed process synthesizer built around the public version
of ASPEN, using the mathematical programming approach
(Diwekar et al., 1991).

The mathematical programming approach to process
synthesis involves:

(a) Formulation of a flowsheet superstructure
incorporating all the alternative process
configurations.

(b) Modeling the superstructure as a mixed integer
nonlinear programming (MINLP) problem of
the form:

MINLP:. Z= min
X,y

Ty + f(X,V) (14)

subject to h(x,v)= 0 (15)

hix,v) =v-z(x)=0

BTy + g(x. V)< 0
y€eY;x €X
where Y = [y|Ay < a,y[0,11™
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The continuous variables x represent flows,
operating conditions, and design vasiables. The
variables v are the output variables, which are
related to the input variables x by model
equations. For equation-oriented environments,
these model equations are embedded in the
equality constraints #I( x,v). The binary
variables y denote the presence or absence of
specific process units.

(c) Identification of both the optimal configuration
and optimal operating process parameters by an
algorithm based on an alternating sequence of
nonlinear programs (to optimize a given
flowsheet) and mixed integer linear programs
(to create alternative flowsheets from the
model superstructure). This alternating
sequence of solution methods is referred to as
mixed integer nonlinear programming (MINLP).

The MINLP Process Synthesizer

The newly implemented MINLP process synthesis
capability in the public version of ASPEN is based on the
mixed integer linear programming (MILP) solver, ZOOM
(Marsten, 1986), and on the nonlinear programming (NLP)
solver SCOPT (Lang and Biegler, 1987). The method
implemented is based on an algorithm called
GBD/OA/ER/AP presented by Diwekar et. al (1992), which
involves solving an alternate sequence of MILP and NLP
problems. The overall structure of the new synthesis
capability is shown in Figure 4. Optimization of the MINLP
process synthesis problem is decomposed into continuous
optimization of NLP problems for a fixed choice of binary
variables, and discrete optimization through the MILP
master problem. The MILP solver (Master) and NLP
optimizer have been implemented in ASPEN as unit
operation blocks and can be executed easily with the



ASPEN process unit blocks.

The process synthesis environment in ASPEN consists of
the Master block, the NLP optimizer, and the entire
superstructure. The initialization of continuous and binary
variables is done in the ASPEN input file. At this stage the
scheme is translated into an initial flowsheet and subsystems
using the decomposition strategy of Kravanja and Grossmann
(1990). NLP optimization of the selected flowsheet is the
first step in the inner loop. The solution yields the objective
function value plus linearization information. This
information is passed to the Master block which internally
modifies the master problem to include the linearization
information. The solution of the master problem results in a
new flowsheet structure. The iteration stops when there is no
improvement in the objective function value.

The Implicit Constraint Problem

The implementation of this new capability in a sequential
modular simulator poses challenging problems which are not
encountered in equation-oriented simulators, and new
strategies are needed to solve these problems. One such
problem associated with the MINLP sequential modular
process synthesizer is that of implicit constraints. This
problem is encountered because of the “black box” nature of
the models in a sequential modular simulator. The ASPEN
MINLP environment is based on a two-level optimization
algorithm consisting of an upper level MILP master problem
and a lower level NLP problem. The MILP master problem
predicts new values for binary variables, while the NLP
problem provides new values for continuous variables. Since
at each stage the MILP master problem obtains linearization
information from the NLP optimizer, the MILP master
problem represents the linearized NLP problem with non-
fixed binary variables. Unlike equation-oriented simulators,
in sequential modular simulators most of the nonlinear
constraints are not represented explicitly by equations. The
linearization information on these constraints, which are
essentially black box relations embedded in the simulator
environment (Al ( X,Vv) in Equation 15), therefore must be
passed to the master problem.

In order to circumvent this problem of implicit constraints
new decision variables are created. These are equated to the
output variables from the flowsheet configurations. This
procedure ensures that the original MINLP problem remains
the same, while at each stage the MILP master problem
receives increased information from the NLP optimizer.
Although this procedure assures complete information
transfer to the master problem, it also increases the
computational load on the NLP optimizer, which is generally
the rate-determining step in the MINLP process synthesis.
Recently Diwekar and Rubin (1993) presented a partitioning
strategy which reduces the computational load on the NLP
problem, which is crucial for the solution of large-scale
synthesis problems.

APPLICATIONS OF THE NEW MODELING
CAPABILITIES

The new capabilities for process synthesis and

optimization under uncertainty provide powerful new tools
for the design and analysis of advanced energy systems. An
application of the new synthesis capability has been
described in a recent paper (Diwekar, et al., 1992), which
focuses on choosing a least-cost approach to sulfur removal
for an integrated coal gasification combined cycle (IGCC)
system with hot gas cleanup and a fluidized bed gasifier. In
this paper we show new results that illustrate use of the
stochastic optimization and stochastic programming
capabilities for the design of an IGCC system.

A 650 MW IGCC system featuring an air-blown dry ash
Lurgi gasifier using a high-sulfur Illinois No. 6 coal is
analyzed. A hot gas cleanup system is used for high
temperature (600°C) sulfur removal from the fuel gas with a
zinc ferrite sorbent, with high efficiency cyclones and
ceramic filters for particulate removal. Details of the
performance and cost models for this system are reported
elsewhere (Frey and Rubin 1992a).

Two key design variables for the fixed bed zinc ferrite
process are the sulfur absorption cycle time and the reactor
vessel length-to-diameter ratio. The sulfur absorption cycle
time is constrained to be at least as great as the time
required to regenerate a bed of sulfated sorbent and return it
to active service after a regeneration cycle, As the sulfur
absorption time becomes longer, more sorbent is required to
capture the syngas sulfur species over the increased time
period. Larger absorption cycle times therefore require either
larger reactor vessels and/or more reactor vessels, which
increases the cost. The length-to-diameter ratio of the
reactor vessel also affects process economics.

Another key area of uncertainty for this technology is the
NO, emission rate. Thermal NO, emissions are expected to
be quite low for IGCC systems due to the low heating value
of the fuel gas and the presence of thermal diluents such as
H,0, CO,, and N, (Holt et al., 1989). However, the hot gas
cleanup system employed by the air-blown Lurgi system
does not remove fuel-bound nitrogen (in the form of
ammonia) from the fuel gas, and a substantial portion of the
ammonia is converted to NO, upon combustion. Thus, NO,
emissions pose a critical concern for systems with hot gas
cleanup. For example, using conventional combustors the
USDOE performance model of the Lurgi-based IGCC system
yields NO, emissions nearly four times greater than U.S.
federal New Source Performance Standard (NSPS) of 260
ng/J (0.6 1bs/10°Btu) for coal-fired power plants. Future
levels of NO, emissions are likely to be subject to much
more stringent requirements because of the role of NO, in
acid rain and tropospheric ozone formation.

To mitigate NO, emissions, several approaches are
possible. In the near term, the most likely approach is the
use of post-combustion exhaust gas NO, reduction

“technology. In the longer term, advanced staged combustion

designs featuring rich/lean combustion may be
commercialized and employed for fuels with high nitrogen
content. In this study, we consider the use of selective
catalytic reduction (SCR) for NO, control. In a SCR system,
ammonia is injected into the flue gas upstream of a catalytic
reactor through a set of nozzles comprising an injection grid.




TABLE 1. UNCERTAIN MODEL PARAMETERS FOR
ILLUSTRATIVE CASE STUDIES

DESCRIPTION AND UNITS (a) Val (b) Type Min Max Prob.
Gasifier Fines Carryover, 50 F 00 10 5%
wt-% of Coal Feed 10 35 20%
35 50 25%
50 80 25%
80 150 15%
150 200 5%
200 300 5%
Fines Capture in Recycle Cyclone, 9% F 0 NV 25%
wt-% of Fines Carryover Q0 B 25%
% 9 25%
91 B 25%
Car‘l%on Retention in the Bottom Ash, 25 T 075 100 25
wt-
Gasifier Coal Throughout, Ib DAF 305 T 152 381 305
coal/(h-ft2)
Gasifier NH3 Yield, % of coal-N 09 T 05 10 09
converted
Gasifier Air/Coal Ratio, 1b air/lb 31 T 27 34 31
DAF coal
Steam/Coal Ratio, 1b steamvib DAF
Coae:ir/coa] =27 081 U 054 108
air/coal = 3.1 155 U 124 186
air/coal = 3.4 238 U 204 272
Zinc Ferrite Sorbent Sulfur Loading, 170 N 216 3184 170
wt-% sulfur in sorbent
Zinc Ferrite Sorbent Attrition Rate, 10 F 017 04 5%
wt-% sorbent loss per absorption
cycle
034 050 20%
050 110 25%
110 150 25%
150 500 20%
500 2500 5%
Fuel NOx, % conversion yof NH3 to N T 0 100 D
NOx
Gasifier Direct Cost Uncertainty, % 2 U 10
of estimated direct capital cost
Sulfuric Acid Direct Cost 0 U 0

Uncertainty, % of estimated direct
capital cost

Gas Turbine Direct Cost Uncertainty,
% of estimated direct capital cost

u
SCR Unit Catalyst Cost, $/ft3 840 U 250 840
N

Standard Error of HRSG Direct Cost 173 173
Model, $Million

3]

(=]

Maintenance Cost Factor, 37T 2 12 3
Gasification, % of process area total

cost

Maintenance Cost Factor, Combined 2 T 15 6 2

Cycle, % of process area total cost
Unit Cost of IC Ferrite Sorbent, $/1b 300 T 075 500 300

Indirect Construction Cost Factor, % D T 15 sl p.4]

Project Contingency Factor, % 175 U 10 Al

(a) DAF = dry, ash free; SCR = selective catalytic reduction; HRSG = heat recovery steam
generator (b) DET. VAL. = deterministic (point-estimate) value. The next column indicates the
type of distribution, where F = fractile, T = triangular, N = normal, and U = uniform. The
remaining columns provide the parameters of the distribution.

Because of the temperature window required for typical SCR
catalysts, the SCR reactor employed with gas turbine

combined cycle systems is typically located in the heat

recovery steam generator. We employ a new performance
and cost model of an SCR system (Frey, 1993) to explore
the effects of two key design variables: the required NO,
removal efficiency, which has a substantial impact on the
catalyst volume requirement, and the catalyst layer
replacement interval, which can be varied to achieve trade-
offs between initial capital cost and annual replacement
costs for catalyst. Since the cost of catalyst is a major
expense for SCR systems, optimizing this process design is
of significant interest.

Key performance and cost parameters of the engineering
models for the IGCC system were assigned probability
distributions based on data analysis, literature review, and
the elicitation of expert judgments. The characterization of
performance uncertainties focused on four major process
areas: gasification, zinc ferrite desulfurization, gas turbine,
and the SCR unit. Uncertainties in additional cost model
parameters also were characterized, including direct and
indirect capital costs, operating and maintenance costs,
financial assumptions, and the unit costs of consumables,
byproducts, and wastes. Through an interactive screening
process, the initial set of approximately 50 uncertain
variables was narrowed to a set of 20 which most
significantly affected uncertainty in plapt efficiency,
emissions, capital cost, and total levetized cost. These
variables are listed in Table 1.

Figures 5 to 7 show the results of different stochastic
optimization and stochastic programming problems applied
to the IGCC flowsheet. Figure 5 first shows results of a
stochastic optimization problem in which the expected cost
of electricity (COE) is minimized for different levels of NO,
control (note that mills/kWh is identical to dollars/MWh).
As the expected (mean) value of NO, emissions is
decreased, the expected value of NO, removal efficiency in
the SCR unit increases proportionally. The cost of the’
optimal design also increases as emissions decrease. As
seen in Figure 5, the optimal design reduces the expected
COE by 0.5 mills/kWh relative to the base case design
achieving 190 ng/J (0.44 1bs NO, /10° Btu). For the 650 MW
plant modeled in this example, this is equivalent to a total
savings of approximately $2 million per year. This savings is
a measure of the benefit resulting from use of the new
stochastic method to optimize the design parameters of the
zinc ferrite and SCR units.

Figure 5 also shows that the expected cost of the optimal
design increases by 0.6 mills/kWh as NO, is lowered from
260 to 95 ng/J (0.6 to 0.22 lbs/106 Btu). This provides an
indication of the expected cost impact of a threefold
tightening of current U.S. standards. Over this range, the
optimal SCR removal efficiency increases from 73% to
90%, the latter being the maximum value established by the
performance model.

To illustrate results for a stochastic programming
formulation, Figure 6 next shows the effect of uncertainties
on the cost of an optimal design. Here, NO, emissions are
constrained to 215 ng/J (0.5 lbs/10% Btu) or less, and SO,
emissions 26 ng/J to (0.06 1bs/10° Btu) or less (the USDOE
design goal of one tenth the current U.S. federal standard). A
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cumulative distribution function (CDF) is generated for a
sample size of 100 iterations. The cost of electricity for the
optimal design configuration is seen to vary by more than a
factor of four due to the performance and cost uncertainties
in the variables shown in Table 1. An 80% confidence
interval gives expected costs between 45.0 and 60.0
mills/kWh.

Figure 7 shows another example in which NO, emissions
are minimized subject to a constraint of 60 mills’/kWh on the
maximum cost of electricity, representing an assumed upper
bound on economic risk. The stochastic programming results
for this case show a 45% probability of optimal designs
achieving between 86 and 130 ng/J (0.2 and 0.3 Ibs NO, /106
Btu.) The median value of the probabilistic results shows a
NO, emission rate of 104 ng/J (0.24 1bs/10° Btu) for this
case. Figure 7 also shows a 20% chance of being unable to
meet the cost constraint of 60 mills/kWh. For the remaining
80% of optimal designs that are within the cost constraint,
2% of these designs have NO, emissions exceeding 260 ng/J
(0.6 1bs/10% Btu), which is the Federal New Source
Performance Standard for coal-fired power plants. For these
cases, there is a significant risk that the process may not be
viable under the economic constraints imposed in this
example, since the plant might not comply with applicable
emission limits.

These results are intended only to be illustrative of the
new modeling capabilities now possible with stochastic
optimization and stochastic programming. Additional case
studies for other advanced power systems, including other
IGCC designs, pressurized fluid bed combustion (PFBC)
systems, and externally fired combined cycle (EFCC)
systems currently are in progress. In conjunction with these
efforts, on-going work also is developing new or improved
cost and performance models for selected process
components and systems for IGCC, PFBC and EFCC
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designs. These new models will form the basis for
systematic comparisons of alternative coal-based power
systems, and the effects of uncertainties on their optimal
design, cost and performance.

CONCLUSIONS
This paper has described a set of new systems analysis tools
and methods that can substantially improve the design and



analysis of advanced coal-based energy systems. By
enhancing existing process simulators with the mathematical
methods presented here (i.e., probabilistic modeling,
optimization, and MINLP synthesis), researchers and
research managers now can tackle a wide range of system
performance and cost analysis not heretofore possible. This
new toolbox can be used in conjunction with new or existing
process performance and cost models to insure that process
design issues are more fully and rigorously considered in all
phases of activity. These modeling tools also can be
extended to a host of other technology applications where
process design, cost minimization, risk analysis,
environmental compliance, and R&D prioritization remain
important issue.
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