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ABSTRACT

Highway motor vehicles contribute significantly to total emissions of nitrogen oxides (NOx),
carbon monoxide (CO), and hydrocarbons (HC). However, relatively little attention has been given to the
proper quantification of variability and uncertainty in highway vehicle emission factors. Variability is the
diversity of emissions values for different vehicles and for individual vehicles for different driving
behaviors, maintenance, fuels, and other factors. Uncertainty arises from a lack of complete knowledge
regarding the true value of emission factors, such as due to limited availability of data, measurement
errors, and nonrepresentativeness of measured values with respect to true on-road vehicle emissions. In
this paper, we summarize the results of two studies aimed at quantifying both variability and uncertainty.
In one study, we developed probabilistic estimates of inter-vehicle variability, and of uncertainty in fleet
average emissions, for a selected set of light duty gasoline vehicle (LDGV) emission factors associated
with the Mobile5a model. In the second study, we measured on-road CO and HC emissions of school
buses and transit buses at several sites using remote sensing. The implications of the emission factor
uncertainty estimates for management and reporting of emission inventories and for development of air
quality management strategies are discussed.

INTRODUCTION

Decision-making about emission control strategies requires good information regarding emissions
and their impact on ambient air quality. Emission inventories (Els) are used for a variety of purposes,
including: (a) identification of annual emission trends; (b) comparison of current to baseline emissions for
compliance purposes; and (c) prediction of ambient pollutant concentrations using air quality models
(AQMs). Biases and random errors in the Els can lead to erroneous conclusions regarding trends in
emissions and the relationships between emissions and ambient air quality.

In this paper, we provide an overview of previous work regarding quantification of uncertainty in
emission factors and emission inventories. Then, we focus on sources of variability and uncertainty
regarding emissions of CO, NO,, and hydrocarbons (HC) from highway motor vehicles. The results of
two recent studies performed are provided. One is a re-evaluation of portions of the Mobile5a emission
factor model. The other is a remote-sensing study of on-road emissions from selected types of buses.
Both studies provide information regarding variability and uncertainty in highway vehicle emissions.

VARIABILITY AND UNCERTAINTY IN EMISSION INVENTORIES

The U.S. Environmental Protection Agency (EPA), the National Academy of Sciences (NAS), and
others have recently placed increased emphasis on the important role of probabilistic analysis in
environmental assessments.'” In May of 1997, EPA issued a “Policy for Use of Probabilistic Analysis in
Risk Assessment”. The policy supports “good scientific practice in quantifying uncertainty and
variability.” EPA’s new policy is based upon the report of an EPA-sponsored workshop of nationally-
known experts in probabilistic methods and a supporting document prepared within the agency regarding
guiding principles.** These recent activities are indicative of increasing acceptance of quantitative methods
for addressing both variability and uncertainty in environmental assessments.

Uncertainty is a lack of knowledge about the true value of a quantity. Uncertainties in emissions
are typically attributable to: (1) random measurement errors (lack of “precision”); (2) systematic errors
(bias or lack of “accuracy”) such as would be caused by imprecise calibration, loss of sample material,
spectral interferences in chemical analyses, or use of surrogate data (e.g., laboratory tests of vehicles




rather than on-road measurements); (3) lack of empirical basis such as would occur when measurements
have not been taken or when estimating emissions for a future source; and (4) human error, such as
random mistakes in entering or processing data. Variability is a heterogeneity of values across different
elements of a population (broadly defined) over time or space. For example, process variability leads to
differences in emissions as a function of vehicle design (inter-vehicle variability) and operating conditions
(intra-vehicle variability). For a single vehicle, emissions may vary with time due to changes in fuel
composition, engine load, random variation in throttle position, failure of pollution control systems,
maintenance practices, and so on. While both varjability and uncertainty can be described probabilistically,
they are distinct concepts.

There have been relatively few reported efforts to quantify uncertainty in Els. Estimates of
uncertainty were developed for the 1980 and 1985 emissions inventories used in the National Acid
Precipitation Assessment Program (N APAP).*" Although uncertainties and systematic errors in Els used
for air quality modeling of tropospheric ozone are acknowledged, specifically for VOC and NOx
emissions, methods for characterizing, evaluating, and managing such uncertainties are lacking. Two
previously used methods are qualitative ratings and propagation of errors. Ratings approaches include “A”
to “E” emission factor ratings and the Data Attribute Rating System (DARS).** While DARS can enable
comparative qualitative assessments of confidence ratings for emissions inventories, it cannot be used to
quantify the precision of an inventory. Thus, these methods cannot be used to evaluate the robustness of a
decision to uncertainty. Other efforts have focused on characterizing the mean and variance of emission
estimates and using simplified approaches for combining uncertainties in activity and emission factor data
to arrive at an aggregate uncertainty estimate for the entire inventory.'®'""> Because of the simplifying
assumptions employed to enable analytical calculations of overall uncertainty in the inventory, these
approaches typically require that only normal or lognormal probability distribution models be used to
describe uncertainty and that all inputs to the inventory must be modeled as statistically independent of
each other. The applications of these approaches suffer from other shortcomings, including failure to:
distinguish between variability and uncertainty; use appropriate averaging times; properly analyze data of
small sample sizes; and employ proper protocols in eliciting expert judgments.

Although limited in many respects, previous work does illustrate the importance of considering
uncertainty in an EI In one study, total NOx emissions were estimated to be uncertain by * 20 percent,
while VOC Els were estimated to be uncertain by + 30 percent.'" These are likely to be underestimates.
For example, 40 percent of total VOC emissions are estimated to come from mobile sources. A study by
Radian of emissions in Western states estimated the standard deviation of VOC emissions from motor
vehicles to be 75 percent of the mean value.'? The large standard deviation implies that the distribution of
emissions is positively skewed. It is possible, but unclear, that this estimate may represent inter-vehicle
variability and not uncertainty in the fleet average.

The actual range of uncertainty in emissions depends upon the type of question being addressed,
which in turn motivates the type of temporal and spatial averaging to be used. For example, estimates of
annual average NO_emissions for a specific intermediate-loaded coal-fired power plant based on several
years of continuous emission monitoring (CEM) data would have comparatively little uncertainty.
However, estimates of the emissions for a given hour of a given weekday (e.g., emissions during an
ozone episode on a future Tuesday from 8 AM to 9 AM) will have more uncertainty due to short-term
variation in plant load and operating conditions. Similarly, estimates of gridded, hourly NO, and VOC
emissions required for AQMs will be more uncertain than would annual average estimates for an entire
state.

The distinctions between variability and uncertainty are illustrated by Frey using a two-dimensional
probabilistic simulation framework." For example, there may be uncertainty regarding the selection of a
probability distribution that represents variability. A source of uncertainty which can be modeled using
known statistical techniques is random sampling error. If data are a representative sample of an unknown
population and are obtained at random, then there is uncertainty in estimates of any statistic used to
summarize the data. Hence, there may be uncertainty regarding the parameters of a probability distribution
model selected to represent the data. Furthermore, there may be ambiguity regarding the appropriate type
of parametric distribution to use. Frey illustrates this by comparing fitted normal and lognormal
distributions, with estimates of uncertainty in the cumulative distribution functions for each type of
distribution, for an example environmental data set."*




A common example of the use of random sampling error to characterize uncertainty is the
development of confidence intervals for mean values. For large sample sizes or for small sample sizes
from relatively symmetrically distributed data sets, the sampling distribution of the mean is approximately
normal (Gaussian). The standard error of the mean is characterized based upon the standard deviation of
the population sample divided by the square root of the sample size. Thus, the standard error will be large
if the sample size is small or if the population sample has a large standard deviation. Methods for
characterizing uncertainties in a variety of statistics are described elsewhere.”'® Numerical simulation
methods, such as the bootstrap, can be used to estimate sampling distributions for the mean in situations
where the assumption of normality would be in error."

In the context of emission factor development, data sets from emissions measurements may
typically be used to characterize inter-vehicle variability based upon resampling of the data, step-wise
empirical distributions, or fitted parametric distributions. The sampling distribution of the mean can be
used to characterize uncertainty in the average emissions from a population of similar sources (e.g., a fleet
of vehicles of similar design). In some cases, the sampling distribution for the mean may have a
sufficiently large range of values such that it dominates any other sources of uncertainty, such as
measurement error. In other cases, the use of a sampling distribution to represent uncertainty may lead to
under-estimates of uncertainty or mis-estimates of uncertainty if other sources of uncertainty are more
important and/or if the data are not truly a representative random sample. In the absence of information
regarding a datum for the true value of emissions, biases can be difficult to quantify. It may be possible to
evaluate the representative of a dataset by comparison with other datasets; however, in practice expert
judgment is required to assess the adequacy of a dataset in representing a population of interest.

VARIABILITY AND UNCERTAINTY IN MOBILE SOURCE EMISSIONS

Bishop et al. describe the variability in emissions estimates for motor vehicles observed using a
variety of testing methods.'® They report on similarities in the observed test-to-test variability in emissions
measurements using several types of tests, including the Federal Test Procedure (FTP) and IM240 driving
cycles, remote sensing, and idle tests. Their conclusions are that individual vehicles may exhibit
substantial variability from one test to another in any of these tests and, therefore, that the observed
variability in repeated measurements for individual vehicles is not primarily due to limitations of the test
methods themselves. For light duty gasoline vehicles, factors such as inconsistency in control of the air-
to-fuel ratio, due perhaps to malfunctioning oxygen sensors, may be a dominate source of variability.

It has been hypothesized that driver behavior can substantially contribute to variability in
emissions. Webster and Shih compared repeated measurements using the IM240 driving cycle test in
which a test driver was asked to produce deliberate speed errors without violating the allowable plus or
minus 2 mph speed tolerance for the standard speed profile.”” Tests were conducted based upon driving
the cycle as smoothly as possible and based upon aggressive driving (e.g., hard accelerations) within the
allowable tolerance. In addition, several other drivers were asked to conduct the cycle in a “normal”
manner. As an example of the results, the CO emissions from the “smooth” tests of a 1987 Plymouth
Reliant were approximately 67 percent of those from “normal” testing, while the “rough” tests yield
emissions 750 percent higher than for the normal tests. Thus, these tests indicate that driver behavior,
may be responsible for potentially order-of-magnitude differences in emissions. Shih ez al. are studying
the effect of driver behavior on throttle position, but note that enrichment events associated with operation
of light duty gasoline vehicles equipped with catalyts complicate the interpretation of test results in terms of
predicting emissions.*

These studies suggest that a substantial amount of inter-vehicle and even intra-vehicle variability in
emissions may be unexplainable by factors often used as independent variables in trip-based emission
factor models, such as the average speed of a driving cycle. Modal emission factor models which attempt
to estimate engine loads may also be unable to completely eliminate unexplained variability due, for
example, to tolerances within which throttle position is controlled.

Singer and Harley developed a highway vehicle emission inventory based upon remote sensing
data. As noted later, remote sensing enables measurements of on-road vehicles under actual driving
conditions. They report emission uncertainty estimates of plus or minus 20 percent for automobiles and
plus or minus 30 percent for light trucks.”




EMISSIONS MEASUREMENTS AND TRIP-BASED EMISSION FACTOR MODELS

The vehicle emission factor models used for regulatory purposes, such as Mobile5a and EMFAC
in California, are trip-based. In typical practice, only one or two trip-based driving cycle tests may be
performed on a given vehicle. Therefore, there are relatively few repeat test data readily available from
which to make inferences of intra-vehicle variability in emission factors derived from these driving cycle
tests. However, there are data available regarding inter-vehicle variability within the small fleets of similar
vehicles that have been tested using the FTP and other cycles for purposes of providing data for input to
the Mobile series of emission factor models. In order to understand the role of these data sets in model
development, it is useful to briefly review the structure of the Mobile model.”**%

The MobileX series of models are predicated upon a Base Emission Rate (BER), which in
principle would be estimated from measurements of Bag 2 of the FTP for zero mileage vehicles (zero miles
on the odometer). Bag 2 is the portion of the FTP that is in “warm stabilized” operating mode. However,
because of the limited availability of such data, the EPA decided to use data from a similar, shorter, and
more widely used test, the IM240 driving cycle, to estimate the FTP Bag 2 emissions. The IM240 test has
been administered to thousands of vehicles, compared to the hundreds of vehicles for which Bag 2 data
were available. By measuring a set of vehicles on both the FTP Bag 2 and the IM240, EPA developed a
dataset from which to develop regression equations for using IM240 data to predict FTP Bag 2 emissions.
Thus, a much larger and presumably more representative set of vehicles are used to characterize the
average BERs for a variety of LDGV technology groups. The IM240 data set contains vehicles with a
range of odometer readings, which also enables development of “deterioration rate” coefficients
representing an assumed linear increase in emissions with increased odometer reading. The BER is
inferred from a regression analysis of emissions versus odometer reading in which the emissions are either
estimated or extrapolated (if zero mileage data are not included in the data set) from the regression equation
for an odometer reading of zero.

The zero-mileage BER is adjusted by multiplicative correction factors. These factors include, for
example, speed correction, mileage deterioration, ambient temperature, operating mode (e.g., cold start,
warm stabilized, hot start), and others. The point-estimate predictions of Mobile5a are well-known to
have a strong sensitivity to variations in the average speed entered by the user. The speed correction factor
is based upon an assumed functional form relating average emissions to the average speeds of multiple
driving cycles. For example, for LDGV, a total of 11 driving cycles were used to develop the speed
correction ratio. The data sets used for this purpose are typically of sample sizes of approximately 100 or
less for each of 13 technology groups.

Chatterjee et al. evaluated the “error/uncertainty” in predictions of Mobile5a due to uncertainty in
average speeds entered into the model and due to uncertainty in driving cyle data underlying the speed
correction factor.” In doing so, they retained the same functional form for the speed correction ratio, and
resampled from the actual emissions to develop estimates of probability distributions for the parameters of
the speed correction ratio equation. The probabilistic speed correction factor equation was then used to
estimate uncertainty in emissions for average speeds ranging from 2 to 48 mph in 2 mph increments.
However, as will be illlustrated later, the functional form of the speed correction ratio may not adequately
represent trends in the emissions data. Furthermore, the approach used by Chatterjee et al. does not
account for uncertainty in the BER.

Since driving cycles are characterized not just by average speed, but by a time variant speed
profile, the use of a speed correction ratio is really a form of extrapolation. For example, an average speed
can arise from many different driving cycles of various temporal speed/acceleration profiles. To uniquely
define a driving cycle would require specification of the actual speed profile or, as an approximation, a
joint distribution of speeds and accelerations. Thus, there is uncertainty in the representativeness of a
driving cycle even when an “average speed” may be well-known.

Recent activities at the U.S. EPA include the develoment of a variety of segments of driving cycles
that can be weighted to represent a variety of different types of trips. The use of weighted averages of
driving cycles, rather than extrapolations from driving cycles, is a promising approach for the development
of more accurate emissions estimates.




SUMMARY OF TWO RECENT PROJECTS

In the last few years, we have conducted two studies aimed at quantifying variability and
uncertainty in highway vehicle emissions. The first is a modeling-based study. The first study, like that
of Chatterjee et al., involves re-analysis of the data used to develop the Mobile5a emission factor model.
However, the analysis methods differ, as described below.” In the second study, we used infrared
remote sensing to measure the ratios of CO, HC, and CO, in the exhaust plumes of selected types of
vehicles, with a focus on school and transit buses.” Based upon data regarding vehicle characteristics,
including fuel economy, emission factors were developed on a grams per gallon and grams per mile basis.
In both projects, intra-vehicle variability and fleet-average uncertainty were estimated. Furthermore, in the
remote sensing study, sufficient data were collected on specific vehicles to enable an assessment of intra-
vehicle emissions variability. It should be noted that driving cycle and remote sensing data are based upon
different measurement methods, and are not directly comparable.

Probabilistic Emission Factors Based Upon MobileSa Datasets

Estimates of emissions from highway mobile sources are typically developed using a deterministic
point-estimate approach. This approach involves the use of emission factor models, such as Mobile5a, to
make estimates of vehicle emission factors for HCs, CO, and NO,. The development of these estimates
requires many model input assumptions that are subject to considerable variability and uncertainty.
Furthermore, as described above, the model is based upon data sets for which there is substantial inter-
vehicle variability. Even for a single vehicle category such as a given technology group of LDGVs, there
is substantial inter-vehicle variability in emissions. Typically, the range of measured emissions within a
technology group for a given pollutant and driving cycle varied over two or three orders of magnitude
from the lowest to the highest value. The variability in individual vehicle zero-mileage BERs estimated
using the approach described previously also spans orders-of-magnitude. Thus, the average BER is
uncertain due to large inter-vehicle variability and small data sample sizes. Additional uncertainty is
introduced by using regression models to predict equivalent FTP Bag 2 emission rates from IM240 data
and to predict zero-mileage emission rates from a data set including odometer readings from zero to 50,000
miles. Both regression equations introduce uncertainty in the form of a residual error term. If the
functional form of the model fitted to the data is not appropriate, then there is additional uncertainty due to
model mis-specification.

Uncertainty in Fleet Average Emissions

A major effort of the project was to quantify the inter-vehicle variability and fleet average
uncertainty in emission factors derived from data from specific driving cycles. As a bottoms-up approach
to the development of an alternative probabilistic version of Mobile5a, a demonstration model was derived
and case studies were carried out.

The demonstration model was derived by characterizing the standard errors of the two regression
models used for conversion of IM240 to FTP equivalent values and for characterization of zero mileage
emissions and deterioration rate coefficents. A linear model was used by EPA for the latter. However,
because the residuals from that model were found to be non-normally distributed, a log-linear model was
employed instead. In the log-linear model, the logarithm of the emissions was used as the dependent
variable and the mileage level was used as the independent variable. The residuals from the log-linear
model are more nearly normally distribution than for EPA’s approach and, therefore, are more consistent
with the basic conditions required for proper use of least-squares linear regression. The standard errors
from the two regression equations enable characterization of uncertainty in the zero-mileage BER.

Because of the limitations of the speed correction ratio previously described, it was decided not to
extrapolate between driving cycles. Instead, speed correction ratios were developed only for average
speeds corresponding to an actual driving cycle. Thus, no speed correction equation was used. The speed
correction ratio was estimated based upon the ratio of a tested vehicle’s emissions on a particular cycle
divided by that same vehicle’s emissions on the Bag 2 portion of the FTP cycle. The inter-vehicle
variability in speed correction ratios was used to characterize a sampling distribution for uncertainty in the
average speed correction ratio. Uncertainty estimates for the average speed correction ratio were
developed for the 10 driving cycles other than FTP Bag 2, ranging in average speed from approximately
2.5 to 65 mph, for the three pollutants and for two technology groups. The technology groups were port-
fuel injected (PFI) and throttle body injected (TBI) vehicles equipped with three-way catalysts. A
probabilistic simulation package, Analytica, was used to estimate the uncertainty in the average emissions




for a given driving cycle, pollutant, and technology group based upon the combined effect of uncertainties
in the regression model error terms for the BER, mileage accumulation, and driving cycle-specific speed
correction ratio.

The results of one case study are shown in Figure 1 for uncertainty in average NO, emissions for
PFI, three-way catalyst equipped LDGVs for 11 driving cycles. The vertical Tukey bars in the figure
depict the 5th, 25th, 50th, 75th, and 95th percentiles of the uncertainty estimates. The comparable point-
estimates based upon the Mobile5a model are also shown. These point estimates were obtained by using
the technology-specific BER and speed correction ratio equations. Because the output from Mobile5a is
averaged over 13 technology groups, these point-estimate results cannot be reproduced merely by running
Mobile5a.

The results in Figure 1 are typical of those for other pollutants and for the other technology group
evaluated. For example, the results indicate that several driving cycles, such as LSP1, LSP2, LSP3, and
NYCC, have similar average emissions. In contrast, the point estimates from the Mobile5a model indicate
that emissions are sensitive to the range of average speeds for these four cycles. The probabilistic results
indicate that the emissions trends assumed in the speed correction ratio model may not be supported by the
emissions data. For example, as average speed increases from 12 to 36 mph, NO, emissions reported by
the model increase, whereas the mean values from the probabilistic analysis tend to decrease. The relative
range of uncertainty in the NO_ emissions varies from plus or minus 25 to over 50 percent for a 90 percent
probability range, depending on the driving cycle. The differences between the mean values of the
probabilistic estimates and the point estimates from the model imply a bias in the model’s predictions.

For all of the cases considered, the results indicate that the uncertainty in the mean CO and HC
emissions, based on a 90 percent probability range, is approximately 20 to 40 percent. Similar to the
results for NO,, biases were found between the mean values estimated from re-analysis of the emissions
data sets and the point estimates obtained from the Mobile5a equations for BER and speed correction ratio.

The reasons for the biases are difficult to explain in some cases because there is limited
documentation available regarding how the regression and speed correction ratio equations were
developed. One factor that may be important is that improper use of regression analysis techniques can
lead to incorrect estimates of mean values. A second factor is that the equation used for the speed
correction ratio appears not to be universally valid for all technology groups and pollutants.

Development of Area-Wide Emissions Estimates
The driving cycles underlying Mobile5a are complete trip-based speed profiles. However, no
individual cycle may adequately represent area-wide emissions for a typical geographic region.

To address the need for more representative uses of driving cycle data, a probabilistic analysis of
driving cycle emissions was carried out using Monte Carlo simulation. To better predict area-wide
emissions, a new methodology was presented by which data from multiple trip-based driving cycles can
be combined to represent any arbitrary frequency distribution for speed. This method can be applied to the
standard driving cycles used in the vehicle testing programs by EPA to better simulate on-road driving
patterns and represent observed variations in speeds. Two case studies for vehicles on 1-40 were done to
demonstrate the working of this new methodology. The methodology can be extended to consider other
factors affecting emissions, such as acceleration. However, currently, most routinely deployed traffic
detection devices are not capable of recording such information. The development of mixtures of driving
cycles is described elsewhere.”

On-Road Emissions Estimates for Buses

Remote sensing has been used primarily to help improve inspection and maintenance programs.
Remote sensing can be used to obtain instantaneous measurements of tailpipe emissions from on-road
vehicles.”” An infrared beam is sent from a source to a receiver across a road, with a beam height
approximately at the level of the vehicle tailpipe. Based upon the transmittance of an infrared (IR) beam
within specific ranges of wavelengths, remote sensing devices (RSDs) are able to infer the relative
concentrations of CO,, CO, and HC within approximately a two second sampling period. The first several
tenths of a second of the sampling period may be used to collect background information before a vehicle
breaks the beam. Measurements of the vehicle exhaust plume may be collected for typically 0.6 seconds.
Because of the short sampling time, it is possible to collect data on potentially thousands of vehicles per




day using a single RSD. The emissions ratios can be used, in combination with a combustion mass
balance model, fuel properties such as composition and density, and vehicle fuel economy, to estimate
emissions of CO and HC on a grams per gallon of fuel consumed or grams per mile of vehicle travel basis.

The objectives of this project were to: (1) conduct on-road remote sensing of carbon monoxide
(CO) and hydrocarbon (HC) pollutant emissions from selected types of vehicles (i.e. school and transit
buses); and (2) determine the on-road emission rates of such vehicles. A total of 1,340 valid remote
sensing measurements of on-road emissions ratios of CO/CO, and HC/CO, were obtained for 265 diesel-
fueled school buses, 36 gasoline-fueled school buses, 19 diesel-fueled transit buses of the Triangle Transit
Authority (TTA), 3 gasoline-fueled buses of TTA, and 12 diesel-fueled transit buses used as courtesy
buses at Raleigh-Durham International Airport (RDU) over the course of 22 days of field work. The
development of databases based upon the observed ratios of CO/CO, and HC/CO, and available
information regarding characteristics of the observed buses involved detailed review of both data and video
records from the RSD, as well as interactions with several agencies. Numerous quality assurance checks
were performed on the data sets, which were analyzed by three different people and reviewed several times
for validity. The details of the study are given by Frey and Eichenberger.”

As an example of the results, the variability in individual estimated gram per gallon CO emission
factors for diesel school buses measurements at one site is shown in Figure 2. Also shown is the mean
value and the 95 percent confidence interval for the mean. Diesel school bus data were collected at five
different sites. However, it was not possible to identify statistically significant differences in average
emissions among the five sites, even though average speeds varied from approximately 15 to 45 mph from
one site to another. For some sites, very few data points were collected, leading to wide confidence
intervals on the average emissions estimates.

The diesel school bus data were analyzed to attempt to identify explanatory variables for
differences in emissions. No statistically significant findings were obtained. This is because the
variability in emissions for individual buses was typically similar to the variability in emissions for the
entire fleet. Therefore, factors such as vehicle age, odometer reading, vehicle size, manufacturer, and fuel
economy were found to be statistically insignificant in explaining variability in emissions. The uncertainty
in the average emission factor for diesel school buses is approximately plus or minus nine percent. Thus,
although the inter-vehicle and intra-vehicle variability is relatively large, the uncertainty in the fleet average
emission factor is relatively small due to the large sample size. In contrast, the uncertainty in the average
CO emission factor for gasoline-fueled buses, for which there werely only 88 observations, was found to
be plus or minus 17 percent.

The uncertainty in average gram per mile emission factors was found to be due primarily to
variability in the remote sensing measurements. The variation in inter-vehicle fuel economy, although
spanning a factor of two from lowest to highest value, does not contribute substantially to overall
uncertainty. Variations in fuel properties are sufficiently small as to be a negligible contributor to
uncertainty in the emission factors, since not all aspects of a complete driving cycle were characterized.

Emission factors calculated based upon remote sensing are specific to the fleets and locations for
which data were obtained. In the case of diesel school buses, we obtained a reasonably representative
sample of vehicles, based upon considering the variations in vehicle age, odometer reading, manufacturer,
and size among the observed vehicles. Because similar measurements were obtained at five different sites,
it appears that these emission factors may be representative of at least portions of a typical school bus trip.
However, there is additional unquantified uncertainty regarding the representativeness of these emission
factors for the purposes of developing emissions inventories.

The data collected from courtesy buses at RDU airport was in some ways the most interesting.
This is because data were collected at one site through which all of the parking courtesy buses must drive
between Terminals C and A of the airport. Thus, over the course of a working day, the same bus with the
same driver could be observed as many as 25 times, enabling repeated measurements over nearly
completely controlled conditions, with a primary exception of some variation in passenger load. A key
observation from these data was that the intra-vehicle variability in repeated measurements for a given bus
was comparable to the overall variability in all of the measurements, which ranged from approximately 3.0
to 30 g/mile for CO. For the three buses for which 25 or more data points were obtained, the uncertainty
in the average emission factor was approximately plus or minus 13 to 23 percent. Although we had
hypothesized that the orders-of-magnitude variation in emissions measurements were due at least in part to




the short sampling time of only 0.6 seconds, these results appear to be consistent with the findings of
Bishop et al. that substantial variability in repeated measurements is found regardless of the measurement
technique used."

One of the original objectives of the study was to identify the fraction of high emitting vehicles in
the fleet. However, it is difficult to provide a quantitative answer in response to this objective.
Commonly, remote sensing measurements are misinterpreted to indicate the fraction of vehicles that are
high emitters. In fact, the distributions of emissions merely indicate that a fraction of the observations
occurred during a time period in which a vehicle was producing high emissions. The study of emissions
of individual school buses and of individual RDU transit buses illustrates that even individual vehicles can
produce a wide range of emissions readings. Therefore, it is difficult to classify an individual vehicle as a
high emitter based upon one remote sensing emission measurement of that vehicle.

For the hydrocarbon emissions, the reporting of results is complicated by the fact that remote
sensing produces a biased under-estimate of total tailpipe emissions. Thus, we have chosen not to include
those results here. We reter the reader to Stephens ef al. (1996) and Frey and Eichenberger (1997) for
more detail on this topic.”’

DISCUSSION AND CONCLUSIONS

The results described here provide insight into random error contributing to uncertainty in fleet
average emission factors. For both the driving cycle and remote sensing data, substantial variability in
emissions among individual vehicles is evident. The inter-vehicle variability leads to uncertainty in the
fleet average emission factor. Based upon the studies reported here, it appears that the uncertainty in
average emissions is often plus or minus 20 percent or more. For the driving cycle data, methodological
issues regarding regression analysis and specification of the functional form of the speed correction ratio
used in Mobile5a were identified as possible sources of bias in highway vehicle emission factors. The
assessments of random error are predicated on having a representative, random sample of data. From the
remote sensing measurements, it 1s apparent that repeated measurements of individual vehicles have as
much or nearly as much variability as a set of measurements obtained from different vehicles. This latter
finding suggests that some variability in vehicle emissions measurement may be irreducible in practice.

Additional sources of uncertainty may include lack of precision and accuracy of the measurement
methods and collection of a non-representative or non-random sample of data. Biases due to measurement
errors can, in some cases, be relatively easy to identify and correct. Biases due to nonrepresentativeness
can be more difficult to quantify.

Emission factors are just one input to an emission inventory. Activity data, such as gallons of fuel
consumption or vehicle-miles of travel in a given area over a given time frame, may also be subject to
uncertainty. For example, it may be difficult to predict precisely the vehicle count or vehicle miles of travel
on a given roadway for a given hour of a given future day when evaluating the effectiveness of proposed
control strategies.

In this paper, we have focused on the use of data analysis and convemlonal statistical techniques
for quantification of uncertainty. The use of such techniques requires Judgment Furthermore, in some
cases there may be little or no data from which to make estimates of uncertainty even in situations were
uncertainty is known or believed to exist. In addition, correction for possible biases may require the use
of judgment. Formal elicitation protocols exist for the encoding of subjective probability distributions
based upon expert judgment. These methods have been used in a variety of env1ronmental assessments,
and are recommended for consideration in the development of emission inventories.’

Quantification of uncertainty in both emission factors and activity data will enable estimation of
overall uncertainty in the total emission inventory. Uncertainties in emission inventories can be propagated
through AQMs to determine their effect on predictions of peak ambient pollutant levels. While uncertainty
analysis of air quality models has in the past been a daunting task, preliminary efforts to propagate
uncertainties have been conducted, such as by Steve Hanna (now with the Harvard School of Public
Health), with models as large as the Urban Airshed Model. If the resulting uncertainty in estimated peak
pollutant levels leads to ambiguity regarding emissions control decisions, then efforts to reduce uncertainty
in the emission inventory can be targeted to improve the decision making process. Using statistical
methods such as correlation coefficients or regression analysis, it is possible to identify the inputs to an




emission inventory that contribute most to uncertainty in overall emissions. For the most sensitive model
inputs, assessments can be made of the “value of information”; that is, the costs of collecting additional
data to reduce uncertainty can be weighed against the possible benefits of uncertainty reduction in terms of
less ambiguous inventories and more precise predictions of control requirements.

Quantification of uncertainty is the first step toward an improved process for managing resources
to reduce uncertainty in emissions inventories and improvements in decision-making processes that depend
upon the inventories. Furthermore, efforts to quantify uncertainties often motivate formulation of critical
questions regarding: the purpose of an assessment; the specific needs for emissions estimates regarding
considerations such as averaging times, geographic area, and dependence with other uncertain quantities;
and identification of the most significant sources of uncertainty. All of these activities will lead to a better
understanding and use of emission factors and emission inventories. A simple way to begin this process
is to start by systematically reporting: the precision and accuracy of measurement methods; mean,
standard deviation, and sample size of emissions measurements; the types of averaging implicit in the
emissions measurements (e.g., one trip, 0.6 seconds); uncertainty estimates for the mean; and
comparisons with other datasets to evaluate representativeness and applicability. The reporting of
uncertainty is considered good practice in natural sciences such as physics. It should also be required in
environmental science and engineering.
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