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21. Quantitative Analysis of Variability and Uncertainty
in Energy and Environmental Systems

H. Christopher Frey
Department of Civil Engineering
North Carolina State University, Raleigh, NC 27695-7908, USA

1. INTRODUCTION

The quantification of variability and uncertainty in energy and environmental systems is receiving
increasing attention. The ability to propagate random variables through computer-based models
has been enhanced by the development of efficient numerical simulation methods combined with
the availability of low cost, powerful personal computers. Add-in packages for standard spread-
sheets, such as @Risk” and Crystal Ball,! are readily available and allow anyone with a personal
computer to do probabilistic analysis. As many of the computational challenges to probabilistic
analysis have been removed, the philosophical and conceptual aspects are more clearly in focus.
For example, as with any type of modeling activity, a concemn is that model predictions are only
meaningful if both the model and model inputs are properly specified.

In this section, we address some of the broader motivations for doing probabilistic analysis. In
Section 2, we present a brief discussion of methodological issues regarding probabilistic analysis.
Three case studies are then presented. The first case study illustrates the application of probabi-
listic methods to the quantification of technological risk for energy and environmental control
systems. The second case study highlights the role of probabilistic analysis in integrated assess-
ment, with application to acid deposition. The third case study emphasizes the distinction between
variability and uncertainty.

Some of the main reasons for doing probabilistic analysis are summarized as follows:

Scientific Rigor. It is a matter of good scientific practice to quantify the levels of uncertainty
associated with any measurement or any model prediction. For example, characterizations of
uncertainty in each measurement taken in a time series, such as for an environmental pollutant,
enables comparisons of measurements to determine whether there are any significant trends in
the change in pollutant concentrations with respect to time. In the absence of uncertainty
characterizations, it would be unknown as to whether observed changes represent an underlying
trend or if they are random artifacts of measurement €rrors.

Knowledge of Uncertainty Can Change Decisions. From a pragmatic and decision analytical
perspective, characterization of uncertainty is important if it affects a decision. Decisions regarding

.

@Risk is a registered trademark of Palisades Corporation.
t Crystal Ball is a registered trademark of Decisioneering, Inc.
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selection of environmental control technologies, specification of control efficiencies, operation of
a system of power plants, and others are better informed if uncertainties are considered. For
example, the performance and cost of new process technologies is typically misestimated, espe-
cially when predictions regarding commercial-scale performance and cost are made during early
stages of technology am<n_o?.=o=.._ The use of inaccurate point-estimates can lead to misallocation
of resources, running into millions or billions of dollars, compared to decisions that would have
been made had the risks as well as the potential payoffs of the technology options been quantified.

Targeting Research to Reduce Uncertainty. Probabilistic modeling allows the key sources of
uncertainty in model inputs to be identified. Knowledge regarding the key sources of uncertainty
can be used to target data collection or research to reduce key uncertainties. By targeting research
activities in this manner, research will be prioritized to areas that will have the most significant
effect on reducing uncertainties in model predictions, such as for the performance and cost of
environmental control technologies or the predictions of ambient pollutant concentrations or
human exposures. Conversely, probabilistic analysis can be used to identify model inputs that
have no significant effect on an answer, even though they may be subject to uncertainty. In many
cases, even for models with dozens or hundreds of uncertain inputs, it is typically only a handful
that contribute most to uncertainty in the model output. Thus, it is possible to reduce by orders-
of-magnitude the amount of data collection or research needed to most effectively improve the
precision of predictions.

There are also situations in which probabilistic analysis may not be needed. For example, suppose
that we are interested in determining whether or not a chemical in the ambient air poses a
significant health risk to an exposed population. There are simple models that can be used, in
combination with highly conservative default assumptions, to make a preliminary estimate regard-
ing whether the risk to the population may be above levels of regulatory or health concern. These
types of analyses produce a point estimate that is believed to be protective of maximally exposed
individuals who may be highly susceptible to adverse effects. However, in this type of point
estimate upper bound (or screening) analysis, it is unknown as to what percentage of the population
would be "protected.” However, it is intended that it would be highly unlikely for any real person
to have a risk higher than the hypothetical person considered in the point estimate. Thus, if this
type of upper bound analysis indicates that risks are below some de minimus level, then it is not
necessary to pursue any further action, either in terms of additional analysis or corrective action.
However, if the upper bound level is above the de minimus level, then it is unknown as to whether
any real people would be subject to a significant risk. In this case, a probabilistic analysis, in
which the variation in exposures to different members of the population is considered, would be
needed to provide insight into whether corrective action is truly needed. A probabilistic analysis
would provide information regarding the levels of exposure and risk to different members of the
population. Policy decisions could then be made based upon protecting a specified percentage
of the population against a particular level of risk. In fact, current guidance from the U.S.
Environmental Protection Agency has recommended that exposures to high-end individuals, who
are at or above the 90th percentile of the population in terms of exposures, be considered in risk
assessments.?
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2. OVERVIEW OF PROBABILISTIC METHODS
In this section, we provide an overview of the rmain considerations and features of probabilistic
analysis. Many of these are illustrated in the case studies of the following sections.

2.1 PHILOSOPHY OF UNCERTAINTY ANALYSIS

The "classical” approach in probability theory requires that estimates for probability distributions
must be based on empirical data. However, in many practical cases, the available data may not
be relevant to the problem at hand, or there may be few data points to support a statistical analysis.
Thus, statistical manipulation of data may be an insufficient basis for estimating uncertainty ina
real system of interest. As a result, some degree of judgment about the available data may be
required. Furthermore, even the application of statistical techniques, such as goodness-of-fit
(GOF) tests, requires considerable judgment. For example, the analyst makes judgments about
what types of parametric distributions are appropriate to represent uncertainty in a given empirical
quantity.

An alternative approach differs in how probability distributions are interpreted. In the so-called
“Bayesian" view, the assessment of the probability of an outcome is based on a "degree of beliet”
that the outcome will occur, based on all of the relevant information an analyst currently has
about the system. Thus, the probability distribution may be based on empirical data and/or other
considerations, such as technically informed judgments or predictions. People with different
information or theoretical beliefs may estimate different distributions for the same variabte.” The
assessment of uncertainties requires one to think about all possible outcomes and their likelthood,

not just the "most likely” outcome.

2.2 A TAXONOMY OF UNCERTAINTY AND VARIABILITY

There are a number of distinct sources of uncertainty in analyses of energy and environmental
problems. These come under the general headings of model or structural uncertainty and param-
eter uncertainty. Several authors, including Morgan and Henrion®, Finkel*, and others, provide
more detail regarding sources of uncertainty. Sources of uncertainty are also discussed in some
U.S. Environmental Protection Agency documents? A few key concepts are summarized here.

2.2.1 Model Uncertaint
The structure of mathematical models employed to represent scenarios and phenomena of interest
is often a key source of uncertainty, due to the fact that models are often only a simplified
representation of a real-world system, and that the problem boundary encompassed by a model
may be incomplete or incorrect. Significant approximations are often an inherent part of the
assumptions upon which a model is built. Competing models may be available based on different
scientific or technical assumptions. Furthermore, the fimited spatial or temporal resolution (e-g.,
grid size) of many models is also a type of approximation that introduces uncertainty into model
results. Different sources of model uncertainties, and how they may be evaluated, are summarized
by m_.@vm .

2.2.2 Parameter Uncertaint
Morgan and Henrion have identified a number of different types of quantities used in models.”

These include:
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MiE:.n&.. Measurable, at least in principle (e.g., pollutant concentration)
nONN.MMS:MMa:?. WO_H% quantities whose values are accepted by convention, such as Planck’s
or the speed of light, are actually empirics iti j . .
Constant or | y empirical quantities subject to measurement error,
Decision variables: These i
: are parameters over which a decision mak i
: met €r exerci
such mw.:.o maximum wnnoEmEo emission rate for a given emission source .
Mm%nownsa to treat this quantity probabilistically. Rather, the sensitivity .o
«\_Nonn.: values of the decision variable(s) should be explored using sensitivity analysis
alue parameters: These represent the preferences or value judgments of a ,

Examples include the dis decision maker.
scount rate and param i . > ax
analysis, parameters of utility functions used in decision

Thus, it is not
f the result to

Rﬂﬂﬂw&“ﬂnﬁ. hawaSQS‘. These are parameters that are associated with a model but not
¢ phenomenon the model represents. For exam, i ,
irect . : . ple, the spatial or t i
size is a model domain parameter introduced in numerical models. P emporl grid
o e .
Sﬂ”M Mwwwh%m mﬂ.w::ﬂ.om En::nnma above, only empirical quantities are unambiguously subjected
- 1he other types of parameters represent quantitie: i
‘ . s which are almost at
properly treated as point-estimates reflectin i ici " decision
g convention, the explicit prefe: isi
maker (broadly defined), or a discrete quanti i o), Thoe we o pon
. . X quantity by its nature (e.g., grid size). Thu
on identifying sources of uncertainty in empirical quantities. These Eo_swo. e foeus here

an&ws error and statistical variation: This type of uncertainty is associated with imperfec
ions in measurement :w.n:.:a:om. Statistical analysis of test data is thus one EQ%%@ fi
developing a representation of uncertainty in a variable. o
Systematic error: The mean value of a measured quantity may not converge to the "
ﬂnm:@<m_=a because of biases in measurements and procedures

‘ariability: Some quantities are variable o i .

Ver ime, space, or some population of indivi
Mvw_cm&w defined) rather than for any individual event or 85@0:2.% i Findividuals
m: 2..«.5. randomness or :.:hwm&ﬁawts\.. Some quantities may be irreducibly random even
h%”wm_oﬂom .:5 m:oﬁ OJ\:M:w example being Heisenberg's Uncertainty Principle. However,
pt is often applied to quantities that are in princi ise q

is ¢ principle measurable
practical matter (due to cost, for example) are not. P prciscly but as 2
M.amw of mm%_:n& .?aa.. r.wo_n of experience about or knowledge of a process or system is a
ource o ::.nQ..SEJ» This Qno. of uncertainty cannot be treated statistically, because it
requires predictions about something that has yet to be built, tested, or measured

true"

2.2.3 Variability and Uncertainty

.E many n=<=o15.n..=m_.§,oc_o:.w. the distinction between variability and uncertainty is criticall
“E_uonw:r .<w~._w_u::< is a wnﬁ_.ﬂ.uw..nsomc\ between individual members of a population of moEM

oMWn.. Ms ﬁ%ﬂn_c_om EM characteristics of a specific member of a population are knowable with

ainty. us, the frequency distribution for the population reflec i

certai . > ion for ts true differences bet

“.a_sn_.:w_v. Knowing the ?oa:.o:ov\ distribution for variability in the population can mm_ﬁwm
Qnﬂnﬁism whether 50. uovEm:o.z should be disaggregated into smaller groups that are more

nearly homogeneous. This type of information is important, for example, in identifying subgroups

especially susceptible to specific health risks from exposures to a given chemical Brone
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However, there may be uncertainty in the characteristics of specific members of the population,
due to measurement error or other sources of uncertainty as described above. In these cases,
there is a resulting uncertainty about the variability frequency distribution. For example, while
individuals may be known to have different exposure levels to a certain pollutant, their health
effects may be uncertain due to the limited applicability of dose-response models extrapolated
from animal bioassay test results. Thus, the population distribution for health effects (e.g., excess
cancers) may be both variable and uncertain.

To complicate matters fusther, however, it is possible for variability to be interpreted as uncertainty
under certain conditions. For example, suppose we are interested in the exposure level faced by
an individual selected at random from a population. If we select an individual at random, the
probability of selecting an individual with a given exposure is the same as the relative frequency
of all individuals in the population subject to the given exposure. Hence, in this case variability
represents an a priori probability distribution for the exposure faced by a randomly selected
individual. However, except for this special case, there is always a distinction between variability

and uncertainty.

Variability and uncertainty are referred to by a variety of terms depending on the background of
particular investigators. For example, variability is sometimes referred to as aleatory uncertainty,
stochastic variability, and interindividual variability. Uncertainty has been referred to as funda-
mental or epistemic ::no_AE.:Q.@ Here, we use the term probabilistic analysis to be inclusive
of quantitative analysis of either variability and/or uncertainty.

Both variability and uncertainty may be quantified using probability distributions. However, the
interpretation of the distributions differs in the two cases. Similar to other authors, the terminology
employed here is to consider that distributions for variability represent the relative frequency with
which members of a population may have values of a quantity within some specified range. Thus,
distributions for variability are referred to here as frequency distributions. In contrast, uncertainty
regarding a quantity implies that there is some range of possible values for a quantity, and that
based upon data analysis or expert judgment one can specify the probability, or degree of belief,
that the true value of the quantity will be within a specified range. Thus, distributions for
uncertainty are referred to here as probability distributions. To some, this distinction appears to
be semantic. However, it is useful to have a language with which to denote distinctions in the
representation of variable versus uncertain quantities.

2.3 DEPENDENCE AND CORRELATION
A question that arises in the early stages of developing a simulation of uncertainty and variability
is whether there is dependence between input variables to a model. In many cases there is, due
to the use of simplified models. In a complete model, the sources of dependence between inputs
- would be explicitly modeled. In a simplified model, some quantities that may be more properly
modeled as state variables are treated as if they are input (exogenous) variables. Thus, it may be
necessary to approximate the dependence between input variables. For example, in a simplified
process model, temperature and chemical reaction conversion rate may both be treated as input
variables, whereas in reality the chemical reaction conversion rate is a function of temperature.
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There are several approaches to dealing with dependence. These include: explicit modeling of
the dependence; parameterization; stratification; bootstrap simulation; and simulation of correla-
tions. Each of these approaches is briefly discussed. :

Modeling dependence explicitly involves the development of a more detailed model which cap-
tures the source of dependence between two quantities. Thus, in the previous example, a chemical
kinetic reaction model in which reaction rate is a function of temperature would capture the
dependence between temperature and conversion rate. Such a model formulation would also
change conversion rate from an input variable to a model state variable.

Parameterization refers to grouping the input variables and treating the grouping as a new input
variable. This treatment of dependence is useful when there is linear dependence between the
variables. For example, air inhalation rate and body weight may both be variables in an exposure
model. The inhalation rate is at least partly dependent on body weight. Thus, a new parameter,
inhalation rate divided by body weight, may be used to capture at least some of the dependence
between the two.

Rather than try to model dependence, another approach attempts to reduce the effects of depen-
dence. This approach, stratification, involves subdividing the problem by creating several sub-
groups or strata. For example, if the problem features a population of individuals with widely
varying body weights and inhalation rates, the problem could be subdivided by bedy weight.
Thus, there would be less variance in inhalation rate within the body weight subgroups. As a
result, the effect of correlation or dependence within the strata would be smaller than for the
population as a whole.

Bootstrap simulation can be used to capture nonlinear and even nonmonotonic dependencies for
the sampling distributions of the parameters of frequency distributions. The sampling distribu-
tions, such as for the mean and variance of a normal distribution, represent uncertainty due to
random sampling error. This topic is discussed in more detail in the section on Case Study 3. A
given mean and variance specifies one possible frequency distribution, which in turn represents
variability in the quantity of interest. Thus, bootstrap simulation can be used to distinguish
between variability and uncertainty to capture dependencies between the uncertain parameters of
frequency distributions for variability. Frey and Rhodes present an example.'® Resampling
techniques can also be used to simulate values from an actual data set, rather than to make
assumptions regarding an underlying parametric probability distribution.

Correlations between distributions may be simulated using numerical methods. For example,
there are easily applied techniques for inducing correlations between normal distributions in Monie
Carlo simulations.’ There are more generalized techniques for inducing rank correlations among
multiple variables."

In the absence of sufficient data from which to characterize correlations, there are alternative
approaches. One is to try to estimate the actual correlations through some type of expert elicitation
process. However, it is generally more difficult to estimate correlation coefficients or covariance
matrices than it is to make judgments about probability or frequency distributions.> Another
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approach is to employ a generalized rank ordering pairing technique to explore the sensitivity of
modeling results to alternative assumptions about correlations. In such an approach, high or low
correlations may be compared to see what effect, if any, there is on model results.

Correlations among input variables to a model may have little effect on modeling results in several
cases. If all of the correlated random variables do not contribute significantly to uncertainty in
key mode} outputs of interest, then correlations among them will tend to have little effect on
model results. When only one of two or more statistically dependent input variables contributes
significantly to uncertainty in a model result, correlations will also have little effect on the result.
The importance of the correlation also depends upon the structure of the model and the output
of interest. Nonlinear models, depending on their features, may tend to magnify or reduce the
effects of uncertainties in selected inputs. Correlations in inputs will typically have a more
pronounced effect on the tails of the model output distribution than on the central values.

2.4 ENCODING UNCERTAINTIES AS PROBABILITY DISTRIBUTIONS

There are two fundamental approaches for encoding probability distributions. These include
statistical estimation techniques and expert judgments. A combination of both methods may be
appropriate in many practical situations. For example, a statistical analysis of measured test data
may be a starting point for thinking about uncertainties in a hypothetical commercial-scale system
for a new process technology. One must then consider the effect that systematic errors, variability,
or uncertainties about scaling-up the process might have on interpreting test results for commercial
scale design muv:ow:osm.:

2.4.1 Statistical Technigues

Statistical analysis is an inherently subjective activity. It involves making decisions regarding
which types of statistical estimators to use, what types of probability models to consider, what
types of statistical tests to use, and what confidence levels to assume. The results of statistical
analyses may be inconclusive. For example, if one wishes to fit a parametric distibution to a
dataset, then one must consider how to: (1) choose candidate probability distributions (¢.g., based
upon knowledge of processes that created the data; by inspection of the central moments of the
data set and comparison to moment planes for distributional families); (2) estimate the parameters
of the distribution (e.g., method of moments, maximum likelihood, probability plots); (3) evaluate
the goodness of fit of the distribution (e.g., probability plots, regression techniques, statistical
tests); (4) choose a significance level (e.g., 0.1, 0.05, 0.025, 0.01, 0.005); and (5) interpret the
results, especially when these methods cannot be used to find a unique answer. For example, if
several statistical tests indicate that, for a given data set, neither a normal nor a lognormal
distribution can be rejected as a possible fit to the data, then it is up to the analyst to make a final
judgment. In reality, it is possible that neither of these options is the “correct” one. For these
reasons, many authors stress that statistical analysis involves a significant amount of ?am:ﬁ:r:.:
Case Study 3 provides an example of data analysis.

Nonrepresentative data pose a difficult challenge for analysts. This is because statistical methods
are not a sufficient basis for quantifying uncertainty in such cases. For example, it is only possible
to evaluate systematic errors in a measured data set quantitatively if the “true” value of the quantity
being measured is known. Thus, in the absence of a known dawm, expert judgment may be




388  Uncertainty Modeling and Analysis in Civil Engineering

required to adjust the results of a statistical analysis to account for potential sources of bias. In
addition, a nonrepresentative sample may place too much weight on a subpopulation of interest.
For example, if we are interested in characterizing fish intake as part of an assessment of exposures
to food-borne contaminants, and if we only considered the consumption of fish purchased in
supermarkets, we would underrepresent a portion of the population that might include subsistence
fishermen. Thus, it might be appropriate to adjust the upper bound of the observed data set if
there is some information available regarding the nature of underrepresented subpopulations. This
type of adjustment, while intended to represent variability, is highly uncertain because it is not
fully supported by empirical observations.

2.4.2 Judgments about Uncertainties Using Expert Elicitation

In this section, we consider the situation in which insufficient data are available to merit the use
of classical statistical techniques to construct probabilistic representations of model inputs. This
may be the case when there are few data points, or when the available data are not representative
of the quantity of interest. In making judgments about a probability distribution for a quantity,
there are a number of approaches (heuristics) that people use which psychologists have observed.
Some of these can lead to biases in the probability estimate. Three of the most common are
briefly summarized.®

1. Availabiliry. The probability that experts assign to a particular possible outcome may be
linked to the ease (availability) with which they can recall past instances of the outcome.

2. Representativeness has also been termed the "law of small numbers." People may tend to
assume that the behavior they observe in a small set of data must be representative of the
behavior of the system, which may not be completely characterized until substantially more
data are collected.

3. Anchoring and adjustment involves using a natural starting point as the basis for making
adjustments. For example, an expert might choose to start with a central "best guess” value.
However, the adjustment from the central value to the extreme values is often insufficient,
with the result that the probability distribution is too tight. This phenomena is overconfidence,
because the expert's judgment reflects less uncertainty in the variable than it should.

Judgments also may be biased for other reasons. One common concern is motivational bias.
This bias may occur for reasons such as: () a person may want to influence a decision to go a
certain way; (b) the person may perceive that they will be evaluated based on the outcome and
might tend to be conservative in their estimates; (c) the person may want to suppress uncertainty
that they actually believe is present in order to appear knowledgeable or authoritative; and (d)
the expert has taken a strong stand in the past and does not want to m%_uo&. to contradict themself
by producing a distribution that lends credence to alternative views.

2.4.3 Designing an Elicitation Protocol

From studies of how well calibrated judgments about uncertainty are, it appears that the most
frequent problem encountered is overconfidence. Knowledge about how most people make
judgments about probability distributions can be used to design a procedure for eliciting these
judgments. Examples of elicitation methods are given elsewhere >'*?!  Elicitation protocols
typically have five to ten major steps and the elicitation process may require several hours to a

389

full day. The appropriate procedure depends on the background of the expert and the quantity
for which the judgment is being elicited. For example, if an expert has some prior knowledge
about the shape of the distribution for the quantity, then it may be appropriate to ask him/her to
think about extreme values of the distribution and then to draw the distribution. On the other
hand, if an expert has little statistical background, it may be more appropriate 10 ask him/her a
series of questions. For example, the expert might be asked the probability of obtaining a value
less than or equal to some value x, and then the question would be repeated for a few other values
of x. The judgment can then be graphed by an elicitor, who would review the results of the
elicitation with the expert to see if he/she is comfortable with the answers.

To overcome the typical problem of overconfidence, it is usual to begin by thinking about extreme
high or low values before asking about central values of the distribution. In general, experts’
judgments about uncertainties tend to improve when: (1) the expert is forced to consider how
things could turn out differently than expected (e.g., high and low extremes); and (2) the expert
is asked to list reasons for obtaining various outcomes.

2.5 PROBABILISTIC MODELING

In order to analyze uncertainties, a probabilistic modeling environment is required. In some cases,
either exact or approximate analytical solutions may be wm?.ovam.n.u._u.: However, numerical
methods can be used with a larger variety of problems. A typical approach is the use of Monte
Carlo simulation.>'>?” In Monte Carlo simulation, a model is run repeatedly, using different
values for each of the uncertain input parameters each time. The values of each of the uncertain
input parameters are generated based on the probability distribution for the parameter. If there
are two or more uncertain input parameters, one value from each is sampled simultaneously in
each repetition in the simulation. Over the course of a simulation, perhaps 20, 50, 100, or even
more repetitions may be made. The result is a set of sample values for each of the model output
variables, which can be treated statistically as if they were an experimentally or empirical observed
set of data.

Although the generation of sample values for model input parameters is probabilistic, the execution
of the model for a given set of samples in a repetition is deterministic. The advantage of Monte
Carlo methods, however, is that these deterministic simulations are repeated in a manner that
yields important insights into the sensitivity of the model to variations in the input parameters,
as well as into the likelihood of obtaining any particular outcome. Monte Carlo methods also
allow the modeler to use any type of probability distribution for which values can be generated
on a computer, rather than to be restricted to forms which are analytically tractable.

2.5.1 Monte Carlo Simulation .

The generation of random variables using Monte Carlo simulation is done using a variety of
methods. In order to illustrate the general concept behind Monte Carlo simulation, we briefly
describe one of these, which involves the use of the inverse cumulative distribution function (cdf)
of a probability distribution. A more detailed discussion can be found in Ang and Tang®. In
random Monte Carlo simulation, a pseudo-random number generator is used to generate uniformly
distributed numbers between 0 and 1 for each uncertain variable. The sample values for the random
variables are calculated using the inverse cdf functions based on the randomly generated fractiles.
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Figure 1. Monte Carlo Simulation.

This approach is shown schematically in Fig. 1. Sample values are generated for each random
variable in the model. For a given iteration of the model, one random value for each of the model
inputs is used. A single value of the model outputs are calculated. The process is repeated until
the desired number of model iterations is completed.

2.5.2 Latin Hypercube Sampling

An alternative to random Monte Carlo simulation is Latin Hypercube Sampling (LHS). In LHS
methods, the fractiles that are used as inputs to the inverse cdf are not randomly generated.
Instead, the probability distribution for the random variable of interest is first divided into ranges
of equal probability, and one sample is taken without replacement from each equal probability
range. However, the ranking (order) of the samples is random over the course of the simulation,
and the pairing of samples between two or more random input variables is usually treated as
independent. In median LHS, one sample is taken from the median of each equal-probability

interval, while in random LHS one sample is taken at random within each interval.?

LHS methods guarantee that values from the entire range of the distribution will be sampled
proportional to the probability density of the distribution. Therefore, the number of samples
required to adequately represent a distribution is less for LHS than for random Monte Carlo
sampling. LHS is generally preferred over random Monte Carlo simulation.>??* As noted earlier,
restricted pairing techniques are available for the purpose of inducing correlations between
variables in LHS.""?
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2.5.3 Selecting Sample Size

The sample size corresponds to the number of repetitions used in the probabilistic simulation.
The selection of sample size is usually constrained at the upper end by the limitations of computer
software, hardware, and time, and at the lower end by the acceptable precision for model results.
In cases where the analyst is most interested in the central tendency of distributions for output
variables, the sample size can often be relatively small. However, in cases were the analyst is
interested in low probability outcomes at the tails of model output distributions, large sample
sizes may be needed. As sample size is increased, computer runtime, memory use, and disk use
may become excessive. Therefore, it may be important to us€ no more samples than are actually
needed for a particular application. Methods for selecting sample sizes for Monte Carlo simulation
are described elsewhere.” %

2.5.4 Analyzing Results

Sample correlation coefficients are a simple but useful tool for identifying the linear correlations
between uncertain variables. Other techniques are available in software packages such as one
developed by Iman, Shortencarier, and Johnson?®. These output analysis techniques are described
here briefly.

Partial correlation coefficients (PCC) are estimated using stepwise linear regression. The input
variable most highly correlated the output variable of interest is assumed as the starting point.
The partial correlation technique then searches for another input variable which is most highly
correlated with the residuals of the regression model already containing the first input variable.
The process is repeated to add more variables in the analysis. The partial correlation coefficient
is a measure of the unique linear relationship between the input and dependent variables that
cannot be explained by variables already included in the regression model. Standardized regres-
sion coefficients (SRC) are calculated based upon multivariate regression of an output variate
based on the inputs. SRCs measure the shared contribution of the input to the output, because
all of the simulation input uncertainties are included in the regression analysis simultancously.
The SRCs are analogous to the partial derivatives of the output variable with respect to each input
variable.

PCC and SRC analysis is appropriate when the relationship between input and output variables
is linear; however, by basing the regression analysis on the ranks of the samples for each variable,
rather than on the values of the samples, the PCC and SRC technigues can be extended to nonlinear,
monotonic cases. These techniques are known as partial rank correlation coefficients (PRCC)
and standardized rank regression coefficients Amwwo.mo

Both sample size and the magnitude of the coefficients must be considered in evaluating the
statistical significance of PCC, SRC, PRCC, and SRRC results. Edwards provides a discussion
of tests of significance for coefficients of determination and correlation coefficients.”’

3. CASE STUDY 1: PROBABILISTIC MODELING OF ENERGY
AND ENVIRONMENTAL TECHNOLOGIES

This case study focuses on the application of probabilistic methods to advanced power generation
and environmental control technologies. Specifically, we focus on Integrated Gasification Combined
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Cycle (IGCC) systems. IGCC systems are a promising approach for clean and efficient coal-
based power generation that are capable of high thermal efficiencies and low discharges compared
to conventional pulverized coal (PC) combustion-based technologies. However, there is limited
commercial experience with IGCC systems, and many promising concepts have not yet been
demonstrated in full-size and integrated EE:V: A number of large-scale demonstration projects
are ::ga:zm%ne.é

The uncertain nature of limited performance and cost data for first generation systems, coupled
with uncertainties associated with alternative process configurations, motivates a systematic
approach to evaluating the risks and potential payoffs of altemative concepts. To explicitly
represent uncertainties in IGCC systems, a probabilistic modeling approach has been developed
and applied. This approach features: (1) development of sufficiently detailed engineering models
of performance, emissions, and cost, (2) implementation of the models in a probabilistic modeling
environment; (3) development of quantitative representations of uncertainties in specific model
parameters based on literature review, data analysis, and elicitation of technical judgments from
experts; and (4) modeling applications for cost estimating, risk assessment, and research planning.

An advanced IGCC system featuring hot gas cleanup technology is analyzed and evaluated. This
evaluation includes control of NO, emissions from an air-blown fixed-bed gasifier-based system
using selective catalytic reduction (SCR). Results will illustrate the types of insights provided
by a probabilistic method for evaluating advanced process technologies.

3.1 INTEGRATED GASIFICATION COMBINED CYCLE

TECHNOLOGY DESCRIPTION

The cost of conventional pulverized coal-fired power plants has tended to increase, while plant
efficiency has tended to decrease, due to requirements for emission control technologies.®’ Natural
gas- and oil-fired systems based on gas turbine combined cycle technology have high efficiencies,
but consume expensive premium fuels. Syngas produced by coal gasification can be used to fuel
a gas turbine. By integrating the steam cycle with the coal gasifier, the overall thermal efficiency
can be optimized. Potential advantages of IGCC over PC power plants include higher thermal
efficiency, a capability for high (over 98%) sulfur removal efficiency, lower NO, emissions, low
particulate matter emissions, reduced solid waste due to byproduct recovery of elemental sulfur,
reduced cooling water requirements, reduced land requirements and a capability to burn coal, oil,
or natural mww.z

In IGCC systems, environmental control is required not just to meet environmental regulations,
but also for proper plant operation. For example, pollutants such as sulfur species and ash particles
have deleterious effects on key components of IGCC systems, such as the gas turbine, and therefore
must be controlled. In addition, the environmental control systems significantly affect the thermal
cycle and, hence, plant efficiency. There are many variations of IGCC power plant designs, based
primarily on differences in the coal gasifier technology, coal gas cleanup system, byproduct
recovery options, and gas turbine technologies employed. We focus on just one of these to
illustrate the application of probabilistic analysis to technology assessment.

3.2 AN EXAMPLE: LURGI GASIFIER-BASED 1GCC SYSTEM

The Lurgi dry-ash coal gasification technology is the oldest of the technologies most commonly
considered for IGCC systems. This process was developed in the 1930s in Germany, and over
150 gasifiers have been installed internationally since. Because the Lurgi gasifier is a moving-
bed design, the exit gas temperature is lower than for other gasifier designs, and the "cold gas
efficiency” (percent of chemical energy in the coal contained in the syngas) is higher.?® The use
of hot gas cleanup (HGCU) eliminates the requirement for syngas cooling typical of many IGCC
concepts, therefore preventing the condensation of tars and oils in the raw coal gas and eliminating
the associated gas scrubbing equipment, resulting in potentially significant cost muinmm.: The
U.S. Department of Energy (DOE) has sponsored a number of system analysis studies to identify
potentially promising advanced IGCC process configurations. These include system concepts
based upon the dry-ash Lurgi gasifier and HGCU.?** Several IGCC projects under the DOE's
Clean Coal Technology (CCT) Program involve components of the simplified Lurgi-based IGCC
concept (Black, 1993; Motter and Higginbotham, 1993).%% A simplified IGCC system was
evaluated by Frey and Rubin, taking into account uncertainties associated with the performance,
emissions, and cost of this commercially unproven concept.'?

A schematic of the air-blown Lurgi gasifier-based IGCC system with HGCU is shown in Fig. 2.
The HGCU system features high temperature fuel gas desulfurization with a zinc ferrite sorbent,
and high efficiency cyclones and ceramic filters for particulate removal. The off-gas from the
zinc ferrite reactor, which contains sulfur compounds, is sent to a sulfuric acid plant for byproduct
recovery. The advantages of such a system, compared to a base case oxygen-blown system with
cold gas cleanup (CGCU), are (1) it does not require an expensive and energy consuming oxygen
plant, (2) it eliminates fuel gas cooling prior to combustion in the gas turbine, thereby improving
the plant thermal efficiency; and (3) it eliminates the need for process condensate wastewater
treatment because tars and oils in the fuel gas are not condensed as they would be in a CGCU
system. For these reasons, this system concept is "simplified" compared to other alternatives.”

In the fixed-bed zinc ferrite process, sulfur is removed from the syngas by reaction with a sorbent
consisting of zinc ferrite pellets. Absorption occurs until just before "breakthrough,” at which
point the sorbent is saturated. The absorber is then taken off-line, and the syngas is diverted to
another zinc ferrite reactor vessel containing regenerated sorbent. Sulfided sorbent is regenerated
using air as a reactant and steam as a diluent, to prevent the heat released in the exothermic
regeneration reactions from sintering the sorbent. The regeneration off-gas containing sulfur
dioxide is then processed into sulfuric acid.

3.3 NO, EMISSIONS FOR IGCC SYSTEMS WITH HOT GAS CLEANUP

Nitrogen oxides are formed in combustion systems through several mechanisms, the most common
of which are thermal NO, and fuel NO,.*® Thermal NO, results from the high temperature fixation
of atmospheric nitrogen. Thermal NO, emissions are expected to be quite low for IGCC systems,
due to the low heating value of the fuel m&.uo Combustor design can also reduce thermal NO,
formation. For example, premixing of fuel and air prior to combustion yields more uniform fuel/air
mixtures and minimizes the peak flame temperatures which contribute to thermal NO, formation.*’

393




394  Uncertainty Modeling and Analysis in Civil Engineering

; Blowdown Exhaust Gas .
Cooling
Water
o Boiler Feedwater Steam »>
Raw waler ..ww__o_. | erun Water ) Ow.._n__ﬂnwg ._.w..._mrw_s H
: - " c.g., ine
Treatment Gasifier Steam % SCR "
Shift & Regen.
! m.s.._« L@Ell_ !
A |
Coal | Gusification, Cyclone ] Cyclone |
Coal Coal Particulate & Zinc Gas |
1 Handling Ash Removal, Ferrite Gican| Turbines
Fines Recycle Process Syngas
I
Ash | »l
Vo
Internal |
Sulfuric Electric
Acid Plant Loads |
1
Net |
. . |Electricity
Taitgas | Sulfuric Acid J  A¥r air | oupat ¥

Figure 2. Schematic of Air-Blown Dry-Ash Lurgi Gasifier IGCC System with Hot Gas Cleanup.

However, the fuel NO, mechanism may be especially important for fixed-bed gasifier IGCC
systems with HGCU. Due to their relatively low operating temperatures, Lurgi gasifiers produce
a higher amount of ammonia in the coal gas than do other types of gasifiers. The ammonia,
which would be captured in a conventional CGCU system during wet scrubbing, passes through
the HGCU system unreacted. In a conventional gas turbine combustor, a large fraction of the
fuel-bound ammonia would be converted to NO,. In a previous system study which accounted
for uncertainty in estimating the gasifier ammonia yield and the fractional conversion of ammonia
to NO, in the combustor, the 90% confidence interval for the NO, emission rate was estimated
to be between 1.5 and 2.8 Ib/ 10° BTU of coal heating value :65.: The current New Source
Performance Standards NSPS for PC power plants are approximately 0.45 1b/10° BTU. Thus,
the uncontrolled fuet NO, emissions from this system can be unacceptably high.

To mitigate NO, emissions, several approaches are possible. Research is ::ao_.iww to develop a
new generation of combustor technology to reduce the conversion of fuel-bound nitrogen to NO,.
For example, while conventional combustors may convert 40 to 80% of fuel bound nitrogen to
205: conversion rates of 20 to 40% were measured in laboratory testing of an advanced can-
annual cosnovrs and preliminary work with staged rich-quench-lean (RQL) has yielded conver-
sions of 40 to 55%. 4 For the RQL design, theoretical expectations are for conversion rates as
low as 10%. However, these technologies are not yet ready for the market. Thus, it is necessary
to consider the use of postcombustion control as a shorter-term measure.

Postcombustion catalytic control of NO, has been demonstrated on natural gas-fired gas turbine
based systems. Recent commercial experience in Japan and Germany with SCR applied to coal-
fired power plants indicates that 80 to 90% NO, removal may be feasible, although SCR has not

395

yet been applied with U.S. coals.** SCR has also been applied to over 80 General Electric natural
gas-fired gas turbine systems worldwide.® SCR has not yet been applied to coal-fueled gas
turbine based systems.

Nitrogen oxides in the flue gas are removed by reduction of NO, by ammonia to nitrogen and
water in the presence of a catalyst. SCR catalysts typically consist of a ceramic honeycomb
substrate, a metal "carrier” and active components dispersed by the carrier on the honeycomb
surfaces. The actual catalyst formulations which are offered commercially are closely held pro-
prietary information. More detail on SCR is given by Frey™.

Uncertainties regarding the application of SCR to IGCC systems center on the potential eftect of
contaminants in the exhaust gas, including catalyst masking, fouling, and poisoning. SCR catalysts
oxidize a small fraction of SO, to SO,, which may react with the ammonia slip to form ammonia
salts, such as ammonium bisulfate. If formed, this material would likely condense in the cold
end of the heat recovery steam generator (HRSG), leading to fouling of heat exchanger surfaces
and corrosion problems. Such problems can be minimized by upstream desulfurization and the
use of catalyst formulations that decrease sulfur oxidation.

3.4 ADVANCES IN GAS TURBINE TECHNOLOGY

Many IGCC design studies completed during the late 1980s and early 1990s were predicated on
heavy duty gas turbine designs featuring a 2,300°F turbine inlet ("firing") temperature and a
pressure ratio of 13.5.'2 These assumptions were typical of the GE MS7001F and Westinghouse
501F gas turbines at the time. However, recent operating experience with such gas turbines has
led to an uprating of these key performance parameters. For example, the GE MS7001FA is now
guaranteed to operate at a pressure ratio of 15.0 and a firing temperature of 2,350°F in natural
gas applications. 4 Ag a result of this uprating, the net power output is increased from 150 MW
to 159 MW, and the thermal efficiency is also improved. For coal gasification systems, the lower
heating value of the coal gas results in a reduction in the compressed air requirement to deliver
a given mass throughput to the turbine inlet nozzle. Therefore, the net power output of the
MS7001FA gas turbine when firing coal gas is nominally 192 MW.Y

3.5 MODELING 1GCC SYSTEM PERFORMANCE AND COST USING ASPEN

The performance, emissions, and cost of the IGCC system are modeled using detailed engineering
models. A performance model of a simplified Lurgi-based system was developed by DOE using
the ASPEN chemical process simulator. This performance model! has been significantly modified
to more completely and accurately represent process performance and emissions.”® For example,
gas cleanup and gas turbine performance and emissions are more completely characterized in the
modified models. A new performance mode! of selective catalytic reduction (SCR) NO, control
has been added to the IGCC model. Furthermore, new cost models were developed. 4930

The cost model was based on approximately 30 design studies of IGCC systems. Direct capital
costs are estimated for approximately one dozen major process areas. Typically, several perfor-
mance and design variables are included in the direct cost models. Indirect and other capital
costs are estimated based on approximately 60 cost model parameters. These include process
area contingencies, project contingency, indirect construction costs, sales tax, allowance for funds
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used during construction, environmental permitting costs, spare parts inventory costs, costs for
initial inventories of fuels and chemicals, land cost, and startup costs. Fixed and variable operating
costs are estimated based on 40 to 50 parameters. Fixed operating costs include maintenance
material and labor for each process area, plant operating labor, and administrative and support
labor. Variable operating costs include consumables (e.g., water treatment chemicals, zinc ferrite
sorbent), ash disposal, fuel, and byproduct credit. Total levelized costs are calculated using the
method of the Electric Power Research Institute (EPRI).*'

3.6 MODEL INPUT UNCERTAINTIES

There are several types of uncertainty in trying to predict the commercial-scale performance and
cost of a new process technology. These include statistical error, systematic error, variability, and
lack of an empirical basis for concepts that have not been tested. Uncertainties may apply to
different aspects of the process, including performance variables, equipment sizing parameters,
process area capital costs, requirements for initial catalysts and chemicals, indirect capital costs,
process area maintenance costs, requirements for consumables during plant operation, and the
unit costs of consumables, byproducts, wastes, and fuel. Model parameters in any or all of these
areas may be uncertain, depending on the state of development of the technology, the level of
detail of the performance and cost estimates, future market conditions for new chemicals, catalysts,
byproducts, and wastes, and so on.®

A unique aspect of the engineering modeling in this study is the use of probabilistic simulation
techniques to explicitly represent uncertainties in these advanced technologies, which have not
been commercially demonstrated. In many cases, model input assumptions are given probability
distributions, rather than single numbers. Examples of the types of distributions that may be
employed are shown in Fig. 3. The selection of a distribution depends on the nature of the
uncertain variable and the type of information available to estimate its uncertainty.

NORMAL UNIFORM LOGNORMAL

TRIANGULAR BETA USER-SPECIFIED

T
Figure 3. Examples of Probability Distributions Used to Represent Uncertainty in Advanced
Process Technologies.
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The probability distributions for each input variable are propagated through the models using
Latin Hypercube. A new capability has been added to the ASPEN chemical process simulator
by Rubin and Diwekar™ for probabilistic simulation, based on work by Iman and Shortencarier®.

Key performance and cost parameters of the engineering models for the IGCC system were
assigned probability distributions based on data analysis, literature review, or the elicitation of
expert judgments. The characterization of performance uncertainties focused on four major
process areas: gasification, zinc ferrite desulfurization, gas turbine, and SCR. Uncertainties in
additional cost model parameters also were characterized, including direct and indirect capital
costs, operating and maintenance costs, financial assumptions, and unit costs of consumables,
byproducts, and wastes. The input uncertainty assumptions for the Lurgi-based IGCC system are
documented by Frey and Rubin'2. The input uncertainty assumptions for the SCR system applied
to IGCC systems are reported by Frey er al® in a case study of a KRW gasifier-based IGCC
system. A total of approximately 40 engineering-economic model parameters were initially
assigned probability distributions. However, through a process of statistical analysis and iteration,
the number of input assumptions treated probabilistically was narrowed to 20. Only those
uncertainties which most significantly influenced uncertainty in NO, emissions, plant thermal
efficiency, capital cost, and levelized cost of electricity were retained. These key uncertainty
assumptions are given in Table 1. The systems model assumes three heavy-duty gas turbine
equipment trains and the use of a bituminous 3.86 weight percent sulfur Hlinois No. 6 coal. The
purpose of the modeling applications is to evaluate uncertainty in the performance, emissions,
and cost of alternative process configurations.

3.7 MODELING RESULTS

The IGCC model was run on a DEC VAXStation 3200 minicomputer using the public version of
ASPEN with the new stochastic modeling capability. Model results are reported in Table 2 for
an analysis of a system with a 15.0 pressure ratio and 2,350°F firing temperature gas turbine and
SCR. The nominal plant size is 710 MW. A few of the results are discussed.

3.7.1 Uncertainties in Process Performance

As shown in Table 2, the plant thermal efficiency is enclosed by a 90% confidence range from
35.7 10 39.6% on a higher heating value coal input basis. In the deterministic analysis, ail parameter
values were set to a "nominal” assumption, typically representing the mode of the corresponding
probability distribution. The results indicate a risk of a 75% chance of lower efficiencies than
the deterministic estimate. A contributing factor to this risk is the uncertainty regarding the
amount of carbon which is retained in the gasifier bottom ash, which is assigned a positively
skewed distribution. Carbon retained in the bottom ash represents a significant efficiency penalty
on the IGCC system, because it is not combusted in the gasifier nor converted to fuel gas. The
SCR system decreases plant efficiency due to increased gas turbine backpressure, steam consump-
tion required for ammonia vaporization and injection upstream of the SCR catalyst, and electric
power consumption required for process area auxiliaries.

3.7.2 Uncentainties in Process Emissions
The results of Table 2 illustrate the low SO, emissions typical of IGCC systems. The SO,
emissions reported here include emissions from both the gas turbine the sulfuric acid plant. The
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Table i. Summary of Deterministic and Uncertainty Assumptions for the IGCC System
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Table 1. Summary of Deterministic and Uncertainty Assumptions for the IGCC System (continued)

DISTRIBUTIONS AND
THEIR PARAMETERS®
DET. Mode or
DESCRIPTION AND UNITS * VAL.’ | Type | Min | Max | Prob.
Gasifier Fines Carryover, 5.0 F 100 1.0 5%
wt-% of Coal Feed 1.0 35 20%
35 5.0 25%
5.0 8.0 25%
8.0 150 | 15%
15.0 [200 {5%
200 300 |5%
Fines Capture in Recycle Cyclone, 95 F 150 90 25%
wt-% of Fines Carryover 90 95 25%
95 97 25%
97 98 25%
Carbon Retention in the Bottom Ash, wt-% 2.5 T 0.75 100 {25
Gasifier Coal Throughput, Ib DAF nOm_\?.:Nv 305 T 152 381 305
Gasifier NH, Yield, % of coal-N converted 0.9 T |05 1.0 0.9
Gasifier Air/Coal Ratio, Ib air/lb DAF coal 3.1 T |27 34 3.1
Steam/Coal Ratio, 1b steam/Ib DAF coal
air/coal = 2.7 0.81 U [0.54 |1.08
air/coal = 3.1 1.55 U 124 |186
air/coal = 3.4 2.38 U [204 [2.72
Zinc Ferrite Sorbent Sulfur Loading, wt-% sulfur 17.0 N 1216 3184170
Zinc Ferrite Sorbent Attrition Rate, wt-% sorbent 1.0 F 1017 |034 |5%
loss per absorption cycle 0.34 1050 | 20%
0.50 | 1.00 |25%
1.00 | 1.50 | 25%
1.50 {500 {20%
5.00 |25.00] 5%
Gas Turbine Pressure Ratio 15.0
Gas Turbine Firing Temperature, °F 2,350
Fuel NO,, % conversion of NH, to NO, 90 T |50 100 |90
SCR NO, Removal Efficiency, % 80
Gasifier Direct Cost Uncertainty, % of direct capital | 20 U {10 30
Sulfuric Acid Direct Cost Unc., % of direct capital | 10 U |0 20
Gas Turbine Direct Cost Unc., % of direct capital 25 U |o 50
SCR Unit Catalyst Cost, $/ft° 840 U 1250 |[840
Std. Error of HRSG Direct Cost Model, $ Million 0 N 1-173]173
Maint. Cost Factor, Gasif., % of process area cost 3 T 2 12 3

DISTRIBUTIONS AND
THEIR PARAMETERS®
DET. Mode or

DESCRIPTION AND UNITS * VAL | Type | Min | Max | Prob.
Maintenance Cost Factor, Combined Cycle, % of 2 T 1.5 6 2
process area total cost )
Unit Cost of Zinc Ferrite Sorbent, $/ib 3.00 T 075 {500 |3.00
Indirect Construction Cost Factor, % 20 T 15 25 20
Project Contingency Factor, % 17.5 U |10 25

2 DAF = dry, ash free; SCR = selective catalytic reduction; HRSG = heat recovery steam generator.
® DET. VAL. = deterministic (point-estimate) value.

¢ Four columns are shown to define probability distributions. The first indicates the type of
distribution, where F = fractile, T = triangular, N = normal, and U = uniform. The remaining four
columns provide the parameters of the distribution. For the fractile, the lower and upper bounds of
each range are given, along with the probability of sampling within that range. For the uniform, the
lower and upper bounds are given. For the triangular, the lower and upper bounds, and the mode
(most likely) value are given. For the normal, the lower and upper bounds of the 95% confidence
interval, and the mode, are given.

NSPS for SO, from PC power plants is 0.6 b/ 10° BTU. Thus, this technology can comply with
the existing standard.

With the use of SCR designed to achieve 80% removal of NO, in the gas turbine exhaust, and
assuming a conventional combustor that does not attempt to minimize fuel NO, emissions, it is
possible that the IGCC system can be brought into compliance with the current NSPS for coal-
fired power plants. The probabilistic estimate of NO, emissions is shown in Fig. 4 as a cumulative
distribution function (cdf). The key input assumptions affecting the emission estimate are the
amount of ammonia produced by the gasifier and the fraction of the ammonia converted to NO,
in the gas turbine combustor. These were both assigned negatively skewed distributions. The
deterministic estimate, also shown in Fig. 4, is based on the "most likely" or mode values from
these distributions. As a result, there is an 85% probability that the NO, emissions will be lower
than the deterministic estimate. There is approximately a 40% probability that the NO, emissions
would exceed the current NSPS. Therefore, additional work may be needed to reduce these
emissions.

3.7.3 Uncertainties in Process Economics

Interactions among uncertainties in plant performance and cost parameters lead to uncertainties
in key measures of cost used for process evaluation. As shown in Fig. 5, the uncertainty in the
total plant capital cost covers a wide range, from about $1,200/kW to over $2,000/kW. The capital
cost associated with the SCR system is influenced primarily by uncertainties aftecting catalyst
requirement and the catalyst unit cost. The mean and median of the plant costs are both
approximately $1,450/kW. A deterministic "best guess" analysis of this technology, which did
not account for uncertainty, indicated a cost of $1,350/kW. There is a 75% chance that the capital
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Table 2. Summary of Results from Deterministic and Probabilistic Simulations of a 710 MW Air-
Blown Lurgi Gasifier-Based IGCC System with 2,350°F Gas Turbine, Hot Gas Cleanup, and
SCR.

Deter. | Median | Mean | Std Dev Range
Parameter® Units® Value' | fo5 T o fo.05 to fo s
n nce
Thermal Efficiency %, HHV | 3832 | 374 37.5 1.1 357 {39.6
Coal Consumption Ib/kWh 0792 | 0.812 }0.811 |0.025 0.767 | 0.850
Zinc Ferrite Sorbent 10°1b 737 748 857 |6.08 491 113.64
Charge
Sulfuric Acid 1b/kWh 0.086 | 0.088 |0.088 |0.003 0.083 | 0.092
Production
Process Water Cons. | Ib/kWh 1.758 | 1.741 1.758 | 0.259 1.302 | 2.221
Plant Discharges
SO, Emissions 1b/10° Bru | 0.041 | 0.040 |0.040 | 0.001 0.038 | 0.041
NO, Emissions 1b/10° Btu | 0.547 | 0.432 |0437 |0.079 0.313 | 0.569
CO Emissions 1b/kWh 0.003 | 0.003 |0.003 }0.001 0.002 | 0.004
CO, Emissions 1b/kWh 1.732 | 1.729 1.728 10.028 1.680 | 1.771
Solid Waste Ib/kWh 0.084 | 0.095 |0.098 |0.014 0.078 | 0.125
Pl S
Total Capital Cost $/kW 1,354 | 1,434 1,450 | 145 1,262 | 1,702
Fixed Operating Costs | $/kW-yr 413 53.8 56.1 9.7 426 | 748
Variable Oper. Costs | mills/kWh | 19.2 19.8 230 (122 17.8 | 384
Coal mills/lkWh | 163 16.7 167 |05 158 | 17.5
Sulfuric Acid Sales | mills/kWh | (1.5) | (1.6) (1.6) |01 s 1
Other mills/lkWh | 4.5 4.6 79 122 3.0 23.2
Cost of Electricity mills’kWh | 51.1 56.5 59.2 14.3 508 | 77.1

*The notation in the table heading is defined as follows: f, = n" fractile (fy 5, = median), y =
mean; and 6 = standard deviation of the probability distribution. The range enclosed by £, o5 to
fy.05 is the 90% probability range. All costs are January 1989 dollars.

® Coal consumption is on an as-received basis. Water consumption is for process requirements
including makeup for steam cycle blowdown, gasifier steam, zinc ferrite steam, and SCR. Solid
waste includes gasifier bottom ash and nonrecycled fines from fuel gas cyclones.

°HHV = higher heating value.

9 Deterministic value based on a deterministic simulation in which median or modal values of
uncertain variables are assumed as "best guess” inputs to the model.

cost would be higher than this estimate, which includes so-called "contingency” allowances
intended to account for both performance- and project-related uncertainties. In the probabilistic
estimate, contingency factors are replaced with explicit representations of uncertainty in direct
costs. Fig. 5 suggests that use of the deterministic cost estimate would expose a decision maker
to a substantial chance of a cost overrun.
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The levelized cost of electricity (COE) is the single most comprehensive measure of a plant's
economic viability. The uncertainty in the COE is shown in Fig. 6. The risk of poor zinc ferrite
sorbent performance is manifested in the long upward tail of the cost uncertainty. The range of
uncertainty in the COE varies by a factor of 3 from the lowest to the highest values. In addition,
the central values of the probability distribution are higher than the "best guess" estimate. There
is approximately a 90% probability that the COE could be higher than the deterministic estimate
of 51.1 mills’kWh, due to the interactions of skewed uncertainties and nonlinearities in the

engineering model.

3.7.4 Identifying Key Sources of Uncertainty

To illustrate the interactions of different sources of uncertainties, several cdfs are shown in Fig. 6.
The “performance only" curve is based on a probabilistic analysis in which all cost-related
uncertainties were set to their nominal, point-estimate values. While this distribution has a lower
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Figure 6. Uncertainty in the Total Levelized Cost of Electricity.

expected value, it nonetheless displays the long tail toward high cost which is a feature of the
“all uncertainties" case. Thus, the downside risk of this particular technology is due to performance
uncertainties only. Uncertainties in capital cost do not contribute significantly to uncertainty in
the levelized cost. However, uncertainties in O&M costs combined with performance uncertainties
lead to nearly the same results as when all uncertainties are accounted for. While many capital
cost estimates are developed with attention to so-called contingency factors, there is often less
attention given to performance or O&M related sources of uncertainty. In this case, this leads to
a 90% probability of cost overrun compared to the deterministic estimate.

An alternative approach to identifying key sources of uncertainty is to perform a multivariate
regression analysis of the effect of each model input uncertainty on the variance in selected model
outputs. Such an analysis is summarized in Table 3. The key uncertainties affecting plant
efficiency, total capital cost, and levelized cost of electricity are ranked based on the magnitudes
of their respective partial rank correlation coefficients (PRCCs). A mixture of performance and
cost parameters significantly impact uncertainty in plant costs. In particular, the uncertainty in
the cost of electricity is most seasitive to the zinc ferrite sorbent attrition rate, which is a highly
skewed uncertainty. These results provide useful information to technology developers and
research planners who wish to increase the payoffs and reduce the downside risks of a new
technology. These resuits indicate that research can be targeted to specific areas to achieve

improvements in the technology.

3.7.5 Performance and Cost Impacts of Gas Turbine Characteristics

To evaluate the effect of gas turbine technology, the results from these two simulations were then
paired, and the probability distributions for the differences between them were estimated. Sim-
ilarly, two deterministic analysis were performed, and the differences between them were calcu-
lated. The effect of the change in gas turbine assumptions from 13.5 pressure ratio and 2,300°F
firing temperature (0 15.0 pressure ratio and 2,350°F firing temperature is shown in Table 4. The
uprated system leads to an average efficiency improvement of 0.5 percentage points. In addition,
because of the higher pressure ratio, the mass throughput in the gas turbine is substantially increased,

Table 3. Key Uncertainties for Lurgi-Based IGCC System with 2,350°F Firing Temperature Gas Turbine and SCR Based on Partial

Rank Correlation Coefficients (PRCC).
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the parameters most highly correlated with efficiency,

3Each of the three column lists, in descending order,

total levelized cost, respec

tively. The numbers are the partial rank correlation coefficients (

variable for each uncertain input variable. Abbreviations for uncertain parameters:

; SCR = selective catalytic reduction.

b . -
Only results that are statistically significant are shown

recovery steam generator

, up through the 8th most sensitive input uncertainty.
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Table 4. Impact of Gas Turbine Improvements on the Performance, Emissions, and Cost of a
Lurgi-Based IGCC System with SCR.*

Deter. | Median | Mean | Std Dev Range

Parameter Units Value® fo.50 n o £5.05 10 fo o5
Plant Performance

Increase in Efficiency | %, HHV 0.5 0.5 05| 0.1 0.4 07
Reduction In Costs

Total Capital Cost $KW 129 107 104 24 60 139
Fixed Operating Costs | $/kW-yr 48 45 4.6 14 24 7.1
Variable Oper. Costs | mills’kWh 0.3 0.3 03| 02 02 0.6
Cost of Electricity mills’kWh 3.4 3.0 30 | 06 1.9 4.0

a A1l values shown are differences between a system with a 2,350°F firing temperature, 15.0
pressure ratio gas turbine and a 2,300°F, 13.5 pressure ratio gas turbine. The notation in the
table heading is defined as follows: f,= n® fractile (fy so= median), b = mean; and o = standard
deviation of the probability distribution. The range enclosed by f,g5to foos is the 90%
m_,ogczf range. All costs are January 1989 ao:E.w.. . . )

Deterministic value based on a deterministic simulation in which median or modal values of
uncertain variables are assumed as "best guess” inputs to the model.

which in turn leads to a higher plant output. Using the earlier uwwc—:vcosw, the net Em:.” oS?.:
is approximately 650 MW, whereas it is increased to 710 MW at the higher pressure ratio. This
in turn leads to significant cost reductions. Capital costs are reduced by wu?.oﬁawﬁ_x $100/kW,
and levelized costs are reduced by 3.0 mills/kWh. Note that the cost of each gas turbine has :9
changed, although the costs of all other process areas do change as a result of a_mnasnnm. in
flowrates through the system. The rating of the gas turbine has waﬁoéa m.:n to the accumulation
of experience with the underlying design, which increased confidence in its performance.

3.8 CASE STUDY CONCLUSIONS .

Compared to deterministic analysis, the probabilistic modeling approach requires that more effort
be devoted to characterizing the range and likelihood of values assigned mo performance m:.a 8.&
parameters in an engineering model. The time required to aa<m_om om:nww:wm of ::n..nn.&.:Q is
usually higher than the time that would be required :.u Ew_ﬁ a single "best guess om.:Euﬁ.
However, by systematically thinking about uncertainties in specific parameters, an E.»_%.ma is more
likely to uncover potential sources of cost growth or performance shortfalls that are historically

overlooked in analyses of new technologies.

The comparison of competing technology options under uncertainty provides Ewwmva into .En:.
risks and potential payoffs. The simplified Lurgi IGCC with SCR .ommonm the potential of higher
thermal efficiency and lower SO, and NO, emissions than conventional oo.&.mnoa power m_w.:m.
However, because of the inability to prevent the formation of fuel NO, in the gas turbine by
eliminating ammonia as a constituent of the fuel gas, there may vn a mcvm::.:w_ performance AEa
cost penalty associated with the use of SCR systems. The co-nzm_a for high cost for SCR E‘o<‘anm
motivation both to improve SCR systems and to seek alternative approaches to NO, emissions

mitigation, such as RQL combustion systems.
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4. CASE STUDY 2: INTEGRATED ASSESSMENT OF ACID DEPOSITION
In this section, we present an example of probabilistic analysis for an integrated assessment of
acid deposition. This analysis is based upon a publicly available model developed under spon-
sorship of the U.S. Department of Energy. The model is the “Tracking and Analysis Framework™
(TAF). Version 1.7 of TAF was used for the case studies given here. The model was developed
by an interdisciplinary and multi-institutional team. The model and additional information
regarding the TAF project is currently available on the World Wide Web at
http://www.lumina.com/taflist. The model was developed using Analytica,’ which is a probabi-
listic modeling environment currently available for Macintosh computers. Analytica enables
models to be graphically represented as influence diagrams, has built-in capabilities for probabi-
listic analysis (including Monte Carlo, random Latin Hypercube, and median Latin Hypercube
sampling methods), and other features to facilitate model building and execution.

TAF is intended to be a flexible framework for modeling and integrated assessment. The model
is illustrated as an influence diagram in Fig. 7. TAF was developed in a modular manner, with
different organizations having lead responsibility for specific modules. For example, teams at
Argonne National Laboratory had a lead role in the development of the emissions estimation,
atmospheric pathways, and visibility effects modules. A team including Carnegie Mellon and
Oak Ridge National Laboratory developed the soils and aquatics effects module. A team at
Resources for the Future developed the health effects and benefits estimation modules. The
software implementation of these modules was guided by Lumina Decision Systems. Several
versions of the model were developed and tested to ensure that the inputs and outputs of each
module were consistent with other modules in the framework. The software environment is
flexible enough to allow users to change the structure of the model or to substitute alternative
models within any of the modules.

The purpose of TAF is threefold: (1) support coordination among scientific researchers; (2)
support communication with policy makers; and (3) provide guidance for prioritizing research
needs. TAF is intended to integrate existing scientific knowledge into a form that can be used
by policy makers to compare alternative emissions reduction strategies in terms of their benefits
and costs. A variety of alternative emissions projections are built into the model, and there is
a provision for users to add their own estimates, as indicated in Fig. 8. The emissions inputs to
TAF are broken down by pollutant (SO, and NO,), emission region (states of the U.S., Canadian
provinces, and northern Mexico), and five-year time steps from 1990 through 2030. The built-
in emissions projections are based upon different assumptions regarding pollution regulations,
electricity demand growth rates, and power plant retirement ages. The first of these is a policy
assumption. The last two are quantities which are uncertain. Thus, one approach to addressing
uncertainty that is used in TAF is to consider different scenarios.

Probabilistic assumptions regarding uncertainties in model inputs are included in several of the
modules. The user has the option to select various groupings of quantities for which probabilistic
inputs can be used. These sources of uncertainty include stochastic variation in climate parameters
that affect either ambient concentrations of pollutants and/or deposition rates, uncertainty in

* Analytica is a registered trademark of Lumina Decision Systems, Inc., Los Altos, California.
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Figure 7. Influence Diagram Mlustrating the Implementation in Analytica of the Tracking and
Analysis Framework (TAF) for Integrated Assessment of Acid Deposition.

population estimates, and variability in the characteristics of lakes which are one of the receptors
of the acid deposition.

In order to run the model, the user must select a baseline and a noBvE._moJ emissions mnospzﬁ.u.
In this example, we assume as the baseline a fictional world in .ir_n.r mrﬂo is no _oo.o Clean Air
Act Title IV. The 1990 Clean Air Act requires a national emission limit mo.n m.c_?a oxides and the
development of new regulations for nitrogen oxides. This baseline scenario 13 m.n_nnﬁna to enable
evaluation of the benefits of the comparison scenario with respect to a “do :EE:W: o.uco? mwn
example, one can estimate the benefits of Title IV by comparison to a scenario in which there is

no Title IV.

For comparison purposes, we also consider a case study .E<o_<€.m an alternative :mmm_.n.mm?o:
policy. The aggressive policy assumes a regulation far more wn_c:_o:w than the current Title IV
that may, for example, require flue gas aom:_?anwnoz to cn installed on a much larger E.::co_,
of power plants. We assume for the aggressive policy option EE electricity load growth is low
and that plant retirements are required after 40 years of owm_.w:ou. ..;:w, Sa. rate of Snrso_om.w
turnover is greater for this case than for the current policy scenaro, allowing for more rapid
introduction of lower-emitting and higher-efficiency power generation systems (such as the one

described in Case Study 1).

The TAF model can be exercised by the user to provide information regarding a variety Om‘ v.osn?m
at a number of different receptors and times. Examples of benefits 5&&.@. m<m:na BOEE_Q and
mortality health effects, averted damages to lakes, and 5.?33 visibility in .So_.nw:o:m_ and
residential areas. These benefits are presented in various units (e.g., bronchitis cases averted,
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Figure 8. Emissions Scenarios Selector for TAF Model (Vession 1.7) as Implemented in Analytica.

deaths averted, etc.). Morbidity, mortality, aquatic, and visibility benefits are also monetized.
Thus, there is flexibility regarding the metrics that can be used to report the benefits of a given
emission control strategy.

One example of benefits estimation is given in Fig. 9. This figure displays the uncertainty in the
prediction of childhood chronic bronchitis cases averted in the year 2010 for all of the receptors
included in the model. For the current policy, it appears that anywhere from zero to approximately
300,000 such cases will be averted by the current policy. The more aggressive policy may avert
as many as 500,000 cases. These results were obtained using the built-in probabilistic simulation
capabilities of Analytica. Clearly, there is a great deal of uncertainty in making estimates of the
benefits of air pollution control strategies. Typically, these uncertainties are ignored, and single
numbers are used to reflect some type of best guess of unknown pedigree. With a tool such as
TAF, it is possible to consider the interactions among uncertainties regarding transport, deposition,
exposure, and dose-response to obtain a more representative picture of the current state of
knowledge.

The TAF model is an example of the capabilities of the current generation of computers and
software. A few years ago it would have been impossible to implement such a large model for
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Figure 9. Example Output from the TAF Model: Uncertainty in the Number of Childhood Chronic
Bronchitis Cases Averted in the U.S. in the Year 2010.

policy use. The TAF can be executed in a matter of minutes, for relatively small cc,oo:&aa“
analysis sample sizes, and thus can serve as a practical tool to answer a J:Bca_. of “what if’
questions regarding the implications of a variety of emission control strategies. Z._oao_w such as
TAF pose a significant challenge to policy makers to better understand what science can and
cannot say regarding questions of environmental impacts.

5. CASE STUDY 3: QUANTITATIVE ANALYSIS OF VARIABILITY
AND UNCERTAINTY

In this section, several examples are provided regarding a general theme of separating <E,.5~..EQ
and uncertainty. In the previous two case studies, the probabilistic E:..Emom have been explicitly
aimed at quantifying uncertainty regarding the ability to make predictions. F.Ommn Study 1, the
predictions centered on the performance, emissions, and cost of new Snr:o_o.m_nm. In .Oumm Study
2, the predictions were focused on estimating the national .co:om_m of ait pollution mo_u.:uo_
strategies. In this section, we consider situations in which we i_m—.. to o.:mnwoﬁzw.o von.g <m:~.&:=<
and uncertainty in model inputs and model outputs. We first begin with a QQ.E_& discussion of
a simulation-based approach to quantifying uncertainty due to random mwBE.Em error. We Gn:
present a two-dimensional approach for numerical simulation of both variability and uncertainty.

5.1 QUANTIFYING VARIABILITY AND UNCERTAINTY IN Z—OUMF -Zw.c.—.m

In this section, we illustrate the distinction between variability and uncertainty using an 9.&:6_0
data set. The data set has 17 values reflecting variability in the measured PCB m%:ooénw:o:w of
vine produce at different Jocations. These data were obtained from O::o:. et al>® While the Q.NS
contain some Mmeasurement error, in this example we focus on characterization of B:aoB.mE:v_wsm
error assuming that the data are a random representative sample. We employ _uo.oa:,mw m_B.Em:o:
methods, as described by Efron and Tibshirani®, to characterize the uncertainty regarding the
true distribution for variability. Other examples of the use of bootstrap simulation methods for
characterization of variability and uncertainty, including an approach for addressing measurement

409

and random errors, is given by Frey and Rhodes'®. For the example data set, we first consider
the uncertainty in the central moments of the data set. Then we consider the implications of these
uncertainties for the selection of parametric distributions to represent the data sets.

5.1.1 Central Moments of Data Sets

The expected value is the first moment of a data set with respect to the origin. Given a random
sample of data, the mean is calculated as follows:

_mccumanxm H)

n

i=1

where E(x) is the expected value (also commonly referred to as the mean, arithmetic mean,
average, arithmetic average), X; is a sample point for the random variable X, and n is the number
of data points. Higher-order moments defined with respect to the mean are referred to as ““central”
moments. In general, the k™ central moment for any continuous distribution is

py =Efx-n] = [ (x-) fax @

where y, is the k™ moment about the mean, W,. For example, the second central moment, |, is
the variance (%), which is a measure of the spread or dispersion of the data. The “unbiased”
estimator of the variance (s%), is given by:

3

Skewness is the asymmetry of a distribution. Skewness is based upon the third central moment

of the distribution. The third central moment may be estimated from a dataset using the following
relation:

m, == 4)

The skewness, 7, is a normalized form of the third central moment with respect to the cube of
the standard deviation:

HW= Ww. 3)
Skewness may have values that are positive, negative, or zero. For quantities that must be
nonnegative, such as concentrations, intake rates, exposure durations, and many other exposure
parameters, it is common to have positively skewed distributions that reflect variability. Random
measurement errors, on the other hand, may commonly have no skewness. As examples, a normal
distribution has a skewness of zero, while a lognormal distribution has a positive skewness. For
some purposes, the square of the skewness is used. This quantity is known as f,:

2
=) ©




410 Uncertainty Modeling and Analysis in Civil Engineering

Kurtosis refers to the peakedness of a distribution. Kurtosis is estimated based upon the fourth
central moment of the distribution. The fourth central moment may be estimated from a data set
using the following relation:

m, == ¢)

The kurtosis is a nondimensional quantity. It is the fourth moment of the distribution relative to
the square of the variance:

Bepoby @®
) ©
The kurtosis is also referred to as B,. A flat distribution, such as the uniform distribution, has a
lower kurtosis than a highly peaked distribution, such as the normal or lognormal distributions.

Y, =

5.1.2 Uncertainty in the Mean, Variance, Skewness, and Kurtosis for Two Example Data Sets
The skewness and kurtosis are useful in helping to select an appropriate parametric distribution
to fit a data set. Fig. 10 displays the relationship between the square of the skewness (B,) and
kurtosis (B,) of many standard parametric probability distributions. The normal distribution always
has a skewness of zero and a kurtosis of three and, therefore, is represented as a point on the
skewness-kurtosis plane. In the case for which a lognormal distribution has a very small coefficient
of variation (o/t), the skewness is close to zero and it will appear to be similar to a normal
distribution. As the coefficient of variation of the lognormal increases, sO will its skewness, and
it will deviate from normality.

The mean, selected other central moments, and selected other statistics of the example data set
are presented in Table 5. The data are purposefully reported with no more than two digits. In
fact, in some cases this may imply far more precision than actually exists regarding estimates for
small data sets. As expected, since these must be nonnegative quantities, the data set is positively
skewed. The skewness and kurtosis appear to be a close match for a lognormal or gamma
distribution. However, an important factor to consider is that with such small sample sizes as for
our example data set, there is a substantial amount of uncertainty in the estimates of the skewness
and kurtosis.

To more properly characterize the data set, we consider the uncertainty in the mean, standard
deviation, skewness, and kurtosis. The uncertainty in a statistic may be represented by a sampling
distribution. The sampling distribution for the mean is exactly normal if the true variance (or
standard deviation) is known and if the data set is from a normal distribution. The sampling
distribution for the mean is related to the student’s t-distribution if the data set is from a normal
distribution but the true variance is unknown. The sampling distribution for the variance of a
data set from a normal distribution is related to the chi-square distribution. When data deviate
from these ideal conditions, bootstrap simulation can be used to estimate the sampling distribu-
tions. Furthermore, bootstrap simulation can be used for cases in which there may be no theoretical
solution.”
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Table 5. Examples of Summary Statistics for Data Set
of PCB Concentrations in Vine Produce

Description Value
Number of Data Points 17

Mean, ng/g 0.10
Second Central Moment (Variance), ?m\mvg 0.0022
Third Central Moment, (ng/g)’ 1.8 x10™
Skewness 1.7
Fourth Central Moment, (ng/g)" 32x107
Kurtosis 6.5

Source of Data Set: Cullen et al., 1996

We use bootstrap simulation to estimate the confidence interval for the means of the vine and
woo.. produce PCB concentration data sets. Given a data set of sample size n, the general approach
in bootstrap simulation is to assume a distribution which describes the quantity of interest, to
perform  replications of the data set by randomly drawing, with replacement, n values, and ,rns
calculate r values of the statistic of interest. For the first step of assuming a &magamé for the
data set, there are many options. One approach is to use the actual data set itself, and to randomly
select, <.<== replacement, the actual values of the data set. This is sometimes referred to as
nomm:%_:.m. A second approach is to fit an arbitrary empirically based cumulative distribution
function to the data, and to sample from the empirical distribution. For example, one may assume
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that the data can be described by a cumulative distribution that is piecewise uniform between
each data point. Such a distribution has minimum and maximum values oosv“:w;on by the
minimum and maximum values in the data set. This is referred to here as a fractile distribution.
A third approach is to assume a parametric distribution, such as normal or _omno._.Ewr to represent
the data. Each approach will lead to a different estimate of the confidence interval. We will
explore each of these approaches using 1,500 replications.

The results of six different methods for estimating the sampling distributions for the mean of the
vine produce data set are shown in Fig. 11. The six approaches provide approximately &?:2
results. If we assume that the underlying data are normally distributed, but that the true variance
is unknown, then the student’s t-distribution may be used to represent the sampling distribution
of the mean. Of the six methods considered, this one yields the widest distribution. Alternatively,
if the true variance is assumed to be known, then a normal distribution may be used to represent
the sampling distribution of the mean (shown as the “Normal Umw:mc:z@:: case in Fig. 11). This
case is nearly the same as that for the student’s t-distribution, because with 16 degrees of mnooa.oB
the student’s t-distribution is approximately similar to a normal distribution. The 8@5@:.:@
empirical (fractile) distribution, and normal distribution swmcamzo:m for the cooﬂ.m:.% simulation
approaches provide similar results to each other and in comparison to the w.:w-.w:@:w.o&o:_»:&
student’s t-distribution and normal distribution approaches. If a lognormal a_m:._c::cs. is wmmjaoa
to underlie the data set, then a slightly different sampling distribution for 50.5@.»: is obtained.
This case study demonstrates that it is possible to obtain different sampling distributions .mo_. the
mean even for a given data set depending on what assumptions the »:m_u\m." Haaw regarding the
data. In this example, we do not know which one is the “right” answer, % in fact any of these
can be considered to be correct. Thus, judgment is involved in selecting and interpreting a method
for estimating the confidence interval or sampling distribution.
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Figure 11. Uncertainty in the Mean of the Vine Produce PCB Concentration Data Set Based upo?
Alternative Estimation Methods.
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Figure 12. Uncertainty in the Standard Deviation of the Vine Produce PCB Concentration Data
Set Based upon Alternative Estimation Methods.

As shown in Fig. 12, the shape of the sampling distribution for the standard deviation depends
upon the underlying probability distribution for the population. The cases shown include re-
sampling of the original data set, specification of an empirical distribution for the population
using a fractile distribution, and specification of parametric distributions for the data set using
normal and lognormal distributions. Furthermore, a sampling distribution for the standard devi-
ation based upon the chi-square distribution for the variance is also shown. The latter would be
valid if the data were drawn from a normal distribution. The sampling distribution obtained from
resampling of the data appears to have some discontinuities. This is in part because the data set
has some repeated values, and because resampling has been done from a data set of finite size.
The empirical cdf bootstrap simulation approach gives a confidence interval that tends to be shifted
toward lower values than any of the other approaches. This is because there is less chance of
simulating the minimum and maximum values for the continuous fractile distribution than there
is for the case of resampling. The parametric bootstrap simulations of assumed normal and
lognormal populations, and the analytical solution assuming a normal population, give approxi-
mately similar results, with slight shifts in the central tendencies. All three of these assume that
the population distribution is unbounded for positive values, and the normal case also assumes
that the concentrations are unbounded for negative values. Thus, the standard deviations tend to
higher for these two cases than for the resampling or empirical cdf cases.

Using the bootstrap simulation methods previously described, estimates of uncertainty regarding
the skewness were developed and are displayed in Fig. 13. Of the four cases shown, the
resampling, empirical CDF, and lognormal distribution-based approaches provide comparable
results. All three of these cases indicate that there is a greater probability that the distribution is
positively rather than negatively skewed, and that the skewness may range from approximately -
0.5 to 2. In contrast, if the data are assumed to be drawn from a normally distributed population,
then the average skewness must be zero and the uncertainty in skewness ranges from approxi-
Mately -1 to +1 due to random sampling error.




414  Uncertainty Modeling and Analysis in Civil Engineering

0.75 4 !

= Boolsirap, Resampling

--  Bootsunp, Empirical CDF

Cumulative Probability
4
“w
A

0.25 4
= — = - Booistrap, Normal Distribution

am-— Bootsirap, Lognormal Distribution

0 \- T 1 L]
(2.00) (1.00) 0.00 1.00 2.00 3.00 4.00
Skewness
Figure 13. Uncertainty in the Skewness of the Vine Produce PCB Concentration Data Set Based

upon Alternative Estimation Methods.

0.75 4 !

Bootstrap, Resampling

we=vses  Bootstrap, Bmpirical CDP

o ive Probability
°©
G
i
>

0.25 4 = — — = Bootsirsp, Norma) Distribution
—m-=  Bootstrap, Lognormal Diswribution
0 T T L]
0.00 2.50 5.00 750 10.00

Kurtosis
Figure 14. Uncertainty in Kurtosis of the Vine Produce PCB Concentration Data Set Based upon
Alternative Estimation Methods.

The results for uncertainty in kurtosis are displayed in Fig. 14. In all four cases, the _osAoq fifth
percentile confidence bound for the Kurtosis is approximately the same, at a value of approximately
1.5. The 95" percentile upper confidence bound is similar in three of :—o.nsm.nm wp a <w€n A.um
approximately 8. The primary exception is the case based upon a normal distribution, i.:_or is
constrained to have smaller values of kurtosis. These resuits indicate that the uncertainty 1n
kurtosis based upon resampling is more closely related to that of a lognormal than a normal

distribution.
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Figure 15. Bivariate Sampling Distributions For Mean and Standard Deviation of an Example
Data Set Based upon Four Approaches to Bootstrap Simulation.

5.1.3 Bivariate Sampling Distributions

In the discussion of uncertainty in the mean, standard deviation, skewness, and kurtosis, we have
evaluated the implications of different assumptions regarding the distribution that describes the
data set for the marginal sampling distributions of each statistic. However, it is also useful to
study the multivariate sampling distributions, such as the bivariate distributions for the mean and
standard deviation, as shown in Fig. 15, and the bivariate distributions for the skewness and
kurtosis, as shown in Fig. 16. The bivariate distributions are displayed as scatter plots of the
1,500 pairs of statistics calculated from the bootstrap simulations. These scatter plots provide an
indication of the dependence between the sampling distributions. For example, the mean and
standard deviation of a normal distribution are statistically independent. Therefore, the scatier
plot of these quantities should be symmetric with respect to both axes, as shown in Fig. 15(c).
However, resampling of the data set indicates that there is a positive correlation between the mean
and standard deviation. A similar dependence is obtained with either the empirical cdf or the
lognormal distribution. Therefore, it would appear that a lognormal distribution might be a more
reasonable choice for representing this data set.

The comparison of bivariate sampling distributions for the skewness and kurtosis also indicates
that the lognormal distribution may be a better choice than the normal distribution for representing
the data set. In addition, the results illustrate that even if the underlying population is positively
skewed, it is possible to obtain a data set that appears to be negatively skewed due to random
sampling error. For example, in the bootstrap simulation of the lognormal distribution, there were
a number of simulated data sets of sample size 17 that had negative skewness. In contrast, because
a normal distribution must have a skewness of zero, the average skewness for this case is zero.
However, due to sampling error, the skewness can be as high as approximately +1.5 or as low as
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Figure 16. Bivariate Sampling Distributions For Skewness and Kurtosis of an Example Data Set
Based upon Four Approaches to Bootstrap Simulation.

approximately -1.5 for a data set of 17 values. Thus, it is possible that a data set that appears {0
be positively skewed may be a random sample of a population that has zero skewness.

5.1.4 Goodness-of-Fit Tests

A number of goodness-of-fit techniques were applied to evaluate both the normal and lognormal
distributions as hypothetical distributions for describing the data set. Probability plots indicated
that both distributions provided a reasonable fit to the data, but that the lognormal was a better
fit. On the basis of the Kolmogorov-Smirnov test, it is not possible to reject either distribution
as inadequate at the 0.05 significance level. The normal distribution can be rejected as inadequate
at the 0.05 significance level based upon the Anderson-Darling test. However, it cannot be rejected
at the 0.025 significance level. The lognormal distribution can be accepted at these significance
levels.

5.2 TWO-DIMENSIONAL SIMULATION OF VARIABILITY AND UNCERTAINTY

As a means for gaining insight into the selection of a parametric distribution to represent the
example data set described in the previous section, we simulate the uncertainty in the cumulative
distribution function for the fitted distribution due to limited sample size, and compare the
probability bounds for the cdf with the original data set. This is done using a two-dimensional
approach to probabilistic simulation, as illustrated in Fig. 17.

The two-dimensional simulation approach is based upon that employed by Frey®. Given a model,
the first step is to disaggregate the model variables into variable and uncertain components. For
all variable quantities, frequency distributions must be specified. For all uncertain quantities,
probability distributions must be specified. For model inputs that have only variability or uncer-
tainty, only a one-dimensional probabilistic characterization in the variability or uncertainty
dimension, respectively, is required for each such input. Itis possible to have a number of variable
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Figure 17. Two-Dimensional Monte Carlo Simulation of Variability and Uncertainty.

input quantities, M, and a potentially different number of uncertain input quantities, N. Thus, it
is possible that M # N. For inputs that are both variable and uncertain, a two-dimensional
characterization is required for each input. Possible dependencies between uncertain and variable
components of an input are represented by the two-way arc at the bottom of Fig. 17. A sampling
technique such as Monte Carlo or Latin Hypercube sampling (LHS) may be employed to generate
one or two sets of samples for each model input. The choice of sampling method depends upon
the input assumptions. If random sampling error is to be simulated using bootstrap simulation,
then Monte Carlo simulation would be employed. In most other cases, LHS would be preferred.
In general, different sampling methods can be used in the two dimensions. For each of the M
variable quantities, the frequency distributions are simulated with a sample size of m. For each
of the N uncertain quantities, the probability distributions are simulated with a sample size of n.
In principle, the sample sizes m and n for the variable and uncertain dimensions of the simulation
need not be the same. Thus, the sample size for the two-dimensional simulation is men.

The model is repetitively evaluated for each combination of samples from the variable and
uncertain parameters. This is represented in Fig. 17 by the matrix of values E;j, where iis an
index from 1 to m of the sample values for the vector of variable quantities, and j is an index
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Figure 18. Two-Dimensional Simulation of Uncertainty Regarding the Use of Normal Distribu-
tions to Represent the Vine Produce Data Set (n = 17).

from 1 to n of the sample values for the vector of uncertain quantities. Any column of the matrix
represents the frequency distribution for variability in exposure levels for a given realization of
uncertainties for each individual. Any row of the matrix represents the probability distribution
for uncertainty in exposure level for a given member of the population.

To evaluate uncertainty regarding the frequency distributions that might be used to describe
variability in the PCB concentrations, a subset of the paired values of the mean and variance
obtained from the bootstrap simulations previously described were input into the “outer loop” of
the two-dimensional simulation. In the “inner loop” of the two-dimensional simulation, a single
pair of parameter values was the basis for generating random samples from a fully specified
parametric distribution. For illustrative purposes, two different sample sizes were used. For the
uncertainty loop, 200 pairs of mean and standard deviation values obtained from the bootstrap
simulation were used. The bootstrap simulation was done using Monte Carlo simulation. For
each pair of parameter values, 50 samples were drawn from either a normal or a lognormal
distribution using median Latin Hypercube sampling. The simulation results were analyzed and
are shown in Figures 18 and 19 for normal and lognormal distributions, respectively.

The uncertainty regarding the best fit normal distribution is wide enough to include all of the
original data points within a 90% probability range for the cdf, as shown in Fig. 18. Thus, it
appears that on the basis of the data a normal distribution is a reasonable fit. The width of the
90% probability band covers a range of approximately 0.10 ng/g, compared to a data set average
of 0.10 ng/g. Most of the data points range from 0.05 to 0.15 ng/g. Thus, it appears that the
range of uncertainty in the data set is comparable to the observed variability. The main cause
for concern with the use of a normal distribution to represent this data set is the significant number
of values that are predicted to be below zero, which is physically impossible. For this reason,
the normal distribution appears to be inappropriate for this data set.

The lognormal distribution looks like a better fit, as shown in Fig. 19. The range of uncertainty
in the cdf is a function of the population percentile. For example, the uncertainty in the upper
tails is much wider than for the lower tails. The range of uncertainty is significant with respect
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Figure 19. Two-Dimensional Simulation of Uncertainty Regarding the Use of Lognormal Distri-
butions to Represent the Vine Produce Data Set (n = 17).

to the mean and range of the original data set. At the upper percentiles, the upper confidence
bound on the uncertainty may be a factor of two greater than the observed data. Thus, it appears
that it is important to quantify both uncertainty and variability in this case.

The example results indicate the type of insights that can be obtained from two-dimensional
analysis. This approach can be used to quantify the uncertainty associated with any percentile
or other statistic of a distribution. In the case of human health risk assessment, for example, we
may wish to know how well we can estimate the health risk to the 95th percentile of the exposed
population. To specify a point estimate of risk, we would also have to specify a confidence level
(e.g., 95% confidence level for the 95th percentile of the exposed population). Comparison of
variability and uncertainty can provide insight into whether more research is needed to reduce
uncertainty, or whether the assessment should focus on subpopulations that may have unique
characteristics compared to the general population. The two-dimensional results can also be used
to determine whether exposure or risks are likely to be below levels of concern and, if not, to
identify control strategies to protect the most highly exposed or at risk subpopulations.

The example data set presented here was used to explore the use of bootstrap simulation and two-
dimensional probabilistic analysis to characterize both variability and uncertainty. Frey and
Rhodes (1996) present a more detailed case study of the use of two-dimensional simulation and
illustrate a variety of other factors to consider regarding the development of input assumptions,
model execution, data analysis, and interpretation of results. Some of the specific factors addressed
include the use of mixture distributions, simulation of both measurement and random errors in
data sets, effects of correlations, adjustment of data sets for different averaging times, and methods
for identifying key sources of variability and uncertainty to prioritize research and data collection.

6. CONCLUSIONS
In this chapter we have described motivations for quantifying variability and uncertainty in the
context of energy and environmental systems. General aspects of probabilistic analysis were




420  Uncertainty Modeling and Analysis in Civil Engineering

presented. Practical aspects of probabilistic analysis were illustrated through a series of three
case studies. Many of the shortcomings commonly assigned to probabilistic analysis can in fact
be addressed using a variety of methods. This is the case, for example, regarding correlations
among model inputs or the identification of key inputs to a model.

The case studies highlight the role that probabilistic analysis can play in conveying limitations
in the ability to predict a variety of quantities, such as technology characteristics and the health
effects due to acid deposition. In Case Study 1, it was shown that probabilistic analysis can
generate insights that affect decisions regarding technology selection and environmental compli-
ance planning. For example, even though on average the performance, emissions, and cost of
the example technology may be acceptable, in each case there is a nontrivial risk. Thus, a decision
maker may wish to pursue additional research on specific aspects of the technology that contribute
most to these risks before adopting the technology for commercial use. In Case Study 2, the use
of probabilistic simulation with a large integrated assessment model was demonstrated. The
integrated assessment model considers the interactions of uncertainties in several components of
the assessment, and clearly conveys the limitations of model predictions through the character-
ization of uncertainties in model outputs. Case Study 3 illustrates how the distinction between
variability and uncertainty may be made in model inputs, and how a two-dimensional simulation
method can be used to characterize variability and uncertainty in a model output. The latter is
of particular interest in the area of human and ecological exposure to contaminants in the
environment, where there is often variability in pollutant concentrations, activity patterns, and
characteristics of exposed individuals and uncertainty regarding these due to lack of data, non-
representative data, small datasets, and measurement errors.

The most important aspect of probabilistic methods is the insight they provide regarding the
strengths and limitations of model inputs and outputs. These methods require more attention to
input assumptions than do “best guess” approaches that use point estimates. However, they also
produce more scientifically defensible model outputs, information for better decision making, and
insight regarding prioritization of additional research and data collection.
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