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INTRODUCTION

Decisions  regarding  research, development, and
demonstration (RD&D) of new power generation
technologies are made based upon projections of the
commercial scale performance, emissions, and cost of
technology alternatives. However, the uncertainties
inherent in these decisions often are not properly
characterized. Because of the lead times and cost associated
with research on new technologies, it is often necessary to
make substantial commitments of resources for
technology RD&D before complete information is
available. Thus, uncertainties in both data and models
may be significant. Often, data are scarce and models used
for decision making cannot be fully validated. As a result,
misleading estimates of performance and cost may be used
to justify research on new technologies that might not
otherwise have been pursued, or to focus research on the
wrong arcas of potentially promising technology.
Decisions should be based upon the best use of all
available technical information. Yet, current techniques
for technology assessment fail to address this need. Indeed,
historical studies by Rand have shown that the
performance of new technologies tends to be over-
estimated, while cost is often under-estimated,' leading to
potential misallocation of scarce resources.

The National Research Council, in a 1995 report,
emphasizes the importance of and need for systems
analysis in energy and environmental research planning,
with specific reference to coal utilization. The NRC
report states that:

New methods to address technical and economic
uncertainties are especially critical to characterize
advanced processes and designs properly at early
stages of development. Characterization and analysis
of uncertainties are also critical to identifying robust
system designs, risks, potential markets, and key
problem areas that should be targeted for research to
reduce technological risks (p. 204).2

To address the need for integrated models of advanced
power generation systems and for improved analysis
techniques, the U.S. Department of Energy (DOE),
through the Morgantown Energy Technology Center
(METC), has supported the development of performance,
emissions, and cost models of several advanced power
generation systems, including integrated gasification
combined cycle (IGCC), externally-fired combined cycle
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(EFCC), and pressurized fluidized bed combustion (PFBC)
concepts.*®  Simultaneously, numerical methods for
simulation of uncertainties and optimization of process
flowsheets have been implemented in the DOE’s public
version of ASPEN.> The new process models and
computational capabilities have been applied to
demonstrate the benefits of quantitative approaches to
dealing with uncertainty and for optimizing technologies
in the face of uncertainty.

The methods demonstrated here also have applications to
strategic planning, capital budgeting, and evaluation of
vendor guarantees.  For example, even for many
commercially available technologies, such as low NO,
burners for conventional coal-fired power plants, there are
significant uncertainties. The predicted environmental
performance of a particular low NO, burner installation is
often uncertain due to variability in the design of boilers
and burners, and in the fuels used at various power plants.
There are also uncertainties in predicting unburned carbon
levels and other system impacts. Thus, it may be difficult
for a utility to predict what the NO, control effectiveness
and real costs will be. These difficulties are also faced by
vendors, who must make guarantees that are competitive
and yet balance the risks of poor performance with the
costs of remediating problems.

This paper focuses on modeling and assessment of the
EFCC system concept. The purpose of the paper is to
demonstrate new methods for technology assessment and
to provide technology-specific insights regarding the risks
and potential pay-offs of the EFCC.

EXTERNALLY-FIRED COMBINED CYCLE

The EFCC is an advanced coal-fired power generation
concept with a potential for higher thermal efficiency and
lower cost than conventional coal-based generating
systems.” The concept incorporates efficient gas turbine
combined cycle technology for use with coal. Unlike
"direct fired” combined cycles, the EFCC does not require
any special fuel preparation.

Design Basis for the EFCC

A conceptual process model was developed by Hague
International (HI) to estimate the performance of a 300
MW EFCC system.” A conceptual diagram is shown in
Figure 1. Coal is combusted in an atmospheric pressure
combustor. The combustor exhaust gases pass through a
slag screen to remove large (> 12 micron) particles and




enter a shell and tube ceramic heat exchange (CerHx).
Filtered air is compressed before it enters the tube-side of
the heat exchanger. In the heat exchanger, the thermal
energy of the shell-side combustion flue gas is transferred
to the tube-side high pressure air. The high pressure air is
heated to the desired turbine inlet temperature and
transported to the turbine via internally insulated piping.
The hot pressurized air is expanded to provide shaft power
to drive the compressor and electric generator. The turbine
exhaust air exits slightly above atmospheric pressure and
enters the coal combustor. Flue gas exiting the ceramic
heat exchanger enters a Heat Recovery Steam Generator
(HRSG), where thermal energy is transfered to a
bottoming steam cycle.
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Figure 1. Conceptual Design for the EFCC.

A bleed stream is extracted from the compressed air stream
for turbine blade cooling. Leakage from the high pressure
air stream in the CerHx to the low pressure flue gas
stream further reduces the mass flow rate of the inlet air
stream to the gas turbine. An Induced Draft (ID) fan is
located downstream of the fabric filter to overcome
pressure drops in the slag screen, CerHx, HRSG, Flue
Gas Desulfurization (FGD) unit, and the fabric filter (FF).

Status of the EFCC

In 1987, the U.S. DOE and a consortinm of electric
utilities and other companies initiated an EFCC
Development Program. The program consists of a series
of R&D activities, to be followed by the construction,
installation, and operation of a prototype.

Under Phase I of the program, a low pressure CerHx was
tested. Phase II of the program, now underway, involves
design, construction, and operation of a full scale-test
facility at Kennebunk, Maine. The facility includes a 500
KW gas turbine, CerHx, slag screen, and a 7.4 MW, (25 x
10° Btu/hr) combustion system. Phase III will involve
work on a demonstration project, and Phase IV will
involve a commercial EFCC system.® Phase III of the
program was originally selected for funding under Round
V of the U.S Clean Coal Technology Program in May
1993. The objective of this phase is to repower an
existing coal-fired powerplant. However, at this time the
status of the project is uncertain.

UNCERTAINTY IN THE EFCC

No '“fifth-of-a-kind" or commercial EFCC plant is
operational as yet. Therefore, making predictions regarding
the mature commercial scale performance and cost of an
EFCC plant involves uncertainties. A few examples are
briefly described. These include the CerHx and gas turbine
modifications. The uncertainties have implications for
both performance and cost of the EFCC.

Most of the work done on the development of the CerHx
has been related to modifying a low pressure recuperator
for EFCC application. The performance of the CerHx
under high pressure and in a corrosive coal combustion
flue gas environment is still uncertain. Several
modifications, such as high temperature piping to the
CerHx, have to be made to a commercially available gas
turbine. Such modifications have not been commercially
demonstrated. Since the CerHx, slagging combustor, slag
screen, and gas turbine modifications have not been
commercially demonstrated, the process performance and
cost parameters related to these are expected to be the most
uncertain of all of the process areas.

MODELING THE EFCC USING ASPEN

DOE/METC has developed a performance model for a 264
MW, EFCC system based on a Hague International (HI)
conceptual design of the system. The model was
developed as an ASPEN (Advanced System for Process
ENgineering) input file. ~ASPEN is a Fortran-based
deterministic  steady-state chemical process simulator
developed by the Massachusetts Institute of Technology
(MIT) for DOE to evaluate synthetic fuel technologies.’
The ASPEN framework includes a number of generalized
unit operation "blocks", which are models of specific
process operations or equipment (e.g., chemical reactions,
pumps). A process plant is represented by specifying
configurations of unit operations and the flow of material,
heat, and work streams. ASPEN contains an extensive
physical property database and convergence algorithms for
calculating results in closed loop systems, all of which
make ASPEN a powerful tool for process simulation.

The METC EFCC performance model has been used to
calculate mass and energy balances and to conduct
sensitivity analyses of performance parameters. The
METC model represents a modified EFCC design. It
consists of: (a) a slagging combustor fueled by Iilinois
No. 6 coal; (b) a ceramic heat exchanger (CerHx); (c) a
2,3000F turbine inlet temperature gas turbine; (d) a 1,785
psia, 1,0500F superheater, and 1,0500F reheater steam
cycle; and (¢) a flue gas desulfurization (FGD) unit. The
flue gas exiting the combustor passes through the CerHx
and HRSG, and is then treated in a wet limestone FGD
scrubber to remove sulfur dioxide.

Several modifications have been made to the existing
METC model. These modifications were identified based
upon a detailed review of the METC model and design,
performance, and cost information regarding the EFCC
and similar technologies. Model modifications focused
on: (1) improving the representation of process areas




already included in the original METC model (e.g., gas
turbine); and (2) adding new performance models (e.g,
combustor emissions, slag screen, fabric filter).
Examples of specific modifications include: (a)
accounting for the air leakage in the CerHx; (b) more
detailed specification of gas turbine compressor and
expander outlet pressures and efficiencies; (c) more detailed
gas turbine cooling air flow circuitry; (d) addition of steam
or water injection to the gas turbine; (e) estimation of
NO,, SO,, and particulate matter emissions; (f) estimation
of auxiliary power consumption based on performance
parameters; and (g) accounting for the efficiency penalty
associated with the reheat of flue gas from the FGD unit.

The METC model did not include any economics.
Therefore, a new cost model was developed which includes
capital, annual, and levelized total costs. The cost model
was implemented as a FORTRAN subroutine which 1is
called by the ASPEN simulation model. The cost model
requires as inputs values for key performance and design
variables that are specified and/or calculated in the ASPEN
simulation model. Thus, the cost model is sensitive to
changes in flowrates, pressures, and other performance and
design variables. Details regarding the new performance
and cost model of the EFCC are reported elsewhere.*’

MODEL APPLICATIONS

The methodological aspects of this work include the use
of deterministic, sensitivity, and probabilistic analyses.
In addition, stochastic optimization is employed to
illustrate how advanced technologies may be designed in
the face of uncertainties. The general features of the
modeling approaches are described briefly.  Results
specific to the EFCC are then presented.

Modeling Methodology

Many models are developed for the purpose of providing a
point-estimate which may be intended to serve as an
accurate and precise prediction of some quantity. The
point estimate is often used in comparison with other
assessments or to develop design targets or budgetary cost
estimates. However, quantitative measures of the accuracy
and precision of model predictions are usually not
developed, because no information on model or input
uncertainty is accounted for quantitatively.

One common method for gaining insight into the risks of
a new technology is to expand upon deterministic analysis
by evaluating the implications of alternative model input
assumptions. In sensitivity analysis, the value of one or
a few model input parameters are varied, usually from
"low" to "high" values, and the effect on a model output
parameter is observed. Meanwhile, all other model
parameters are held at their "nominal " values. When
there are many uncertain input variables, the
combinatorial explosion of possible sensitivity scenarios
(e.g., one variable "high", another "low," and so on)
becomes unmanageable. Furthermore, sensitivity analysis
provides no insight into the likelihood of obtaining any
particular result. Thus, while they indicate that a range of
possible values may be obtained, sensitivity results do not

provide any explicit indication of how a decision-maker
should weigh each possible outcome.

Probabilistic analysis can be wused to propagate
uncertainties in model inputs to estimate uncertainties in
model outputs. Unlike sensitivity analysis, probabilistic
analysis yields quantitative insight into both the possible
range and the relative likelihood of values for model
outputs.  Probabilistic analysis helps decision makers
understand both the potential pay-offs as well as the
downside risks of a new technology compared to other
alternatives.  Probabilistic analysis also enables the
identification of key sources of uncertainty, or risk, which
can be targeted for further investigation.

Technology designs may be evaluated under uncertainty
using various techniques. One technique is stochastic
optimization.’ In stochastic optimization, optimal values
of design variables are selected based on an objective
function and set of constraints that deal explicitly with
uncertainty. For example, it is possible to maximize the
mean estimate of plant thermal efficiency, or to minimize
the probability that plant efficiency would be below a
particular level, given uncertainty in process performance.
The results of such analyses are designs that are robust to
uncertainties. This is a substantial improvement over
planning and design approaches which ignore sources of
uncertainty and, hence, technological risk.

Model applications for the EFCC are presented which
illustrate each of these methodological approaches.
Additional details on the deterministic and sensitivity
analyses of the EFCC are reported by Agarwal and Frey’

Deterministic Analysis

The new performance model of the EFCC was applied to
yield a "best guess" estimate of process efficiency,
electrical output, emission rates, and other performance
variables. The case study was based upon a single heavy
duty gas turbine such as a General Electric Frame 7F.
Illinois No. 6 coal was assumed. The model was run on a
VAXStation 3200 using the DOE version of ASPEN.
The run time for a single simulation is 70 seconds.

The new mode]l yields different performance estimates than
the previous METC model. For example, the net plant
thermal efficiency estimated using base case assumptions
is 42.4 percent (HHV basis) compared to a METC
estimate of 44.1 percent. The primary differences in the
estimates are due to the following features of the new
model: (1) more detailed modeling of the gas turbine,
including cooling air circuitry and choked flow conditions
at the turbine nozzle; (2) models and assumptions
regarding coal conversion, heat losses, and CerHx air
leakage that are not accounted for in previous case studies;
(3) consideration of FGD reheat requirements; and (4)
more detailed calculation of auxiliary energy loads. The
lower efficiency estimate obtained here is thus due to
differences in both the performance model itself and the
input assumptions. The model is sensitive to changes in
input assumptions. For example, an EFCC system with
a wet stack (no FGD reheat) would have a net plant
efficiency of 44.6 percent.




The new model includes environmental aspects of the
technology. Emission rates of acid rain precursors, carbon
dioxide, particulate matter, and slag from the combustor
are calculated. The base case design is intended to comply
with current New Source Performance Standards for coal-
fired power plants. Additional SO, control may be
achieved with high efficiency (>95%) FGD, while NO,
emissions may be reduced through the use of staged
combustion. However, the slagging combustor design for
the EFCC has not been demonstrated at full scale.

Sensitivity Analysis

Thirteen performance and design parameters were varied in
a series of 55 sensitivity analysis runs.” These analyses
focused on four major process areas: (1) combustor; (2)
CerHx; (3) gas turbine; and (4) environmental control.
Selected results are described here. These include
sensitivity analysis of a performance input, CerHx heat
loss, and a design variable, steam injection rate.
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Figure 2. Net Plant Output and Efficiency Versus
Ceramic Heat Exchanger Heat Losses.

Heat energy is lost through the CerHx walls due to
radiation, which leads to a lower flue gas exit temperature
than if the heat loss had not occurred. Thus, the heat
input to the steam cycle and the steam turbine power
output are both decreased. The change in net plant power
output and the net plant efficiency with increasing CerHx
heat loss is shown graphically in Figure 2. With an
increase in CerHx heat loss, the gas turbine output
remains the same, but the steam turbine power output
decreases substantially. Since the coal input remains
constant with a change in the CerHx heat loss, the net
plant efficiency decreases by 1.6 percentage points from
the lower to the upper limit of the CerHx heat loss.
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Figure 3. Net Plant Output and Efficiency Versus Steam
Injection Mass Flow Rate.

Steam injection from the steam cycle to the gas turbine
increases the power output from the gas turbine by adding
to the mass flow of the air at the turbine expander inlet,
with a simultaneous reduction in steam cycle output. The
change in the net plant power output and efficiency with
steam injection rates is shown in Figure 3. The net plant
output increases by 2.25 MW for an injection rate of
400,000 1b/hr. Compared to the base case, the net plant
efficiency increases by 0.12 percent points for 200,000
1b/hr steam injection. However, for higher steam injection
levels, it decreases. While steam injection offers only a
modest increase in plant output and a small effect on plant
efficiency, its most attractive feature may be with regard
to costs. By offsetting increased gas turbine output with
reductions in steam turbine output, it would be possible
to reduce the size and, hence, cost of the steam turbine.
The gas turbine capital cost would remain approximately
constant, except for costs to install steam injection.
Thus, an overall decrease in plant cost may be achieved.

Probabilistic Analysis

A probabilistic modeling capability for the DOE version
of ASPEN is available for evaluating process technologies
in the face of uncertainty.® This capability is utilized here
for the evaluation of uncertainties in the EFCC system.

Uncertainty Assumptions. The development of
ranges and probability distributions for model input
parameters may be based on information available in
published studies, statistical data analysis, and/or the
judgments of process engineers with relevant expertise.
Due to the unavailability of sufficient process performance
data, it was not possible to conduct statistical data
analysis.  Selection of uncertain EFCC performance
parameters, and their ranges and probability distributions,
were based on published data and expert judgments.

Table 1. Selected (4 of 35) Input Assumptions for
Probabilistic Analysis

Deter-
ministic Distri-

Variable | Unit| Value bution® | Range’
Carbon % 99.0 T 99.0-
conversion 100.0

(99.0)
Combustor | % 0.5 T 0.25-5.0
heat loss 0.5)
CerHx air % 0.5 T 0.25-3.0
leakage (0.5)
CerHx heat| % 1.0 T 0.25-4.0
loss (1.0)

* T = triangular distribution.
® For triangular distribution, the lower and upper bounds
are given, and the mode is given in parantheses.

Table 1 lists some of the performance variables selected
for stochastic analysis, along with the deterministic value,
range, and distributions for each of these variables. A
total of 35 variables were treated probabilistically. Four




of these are shown as examples in the table.

Uniform,

triangular, and normal distributions were used to quantify

judgments regarding uncertainties.

For example, a

triangular distribution was chosen for variables for which
the mode or the most probable value was known, and for

which an expert

also specified upper and lower bounds.

The development of input assumptions for an uncertainty

analysis is illustrated with one example.

The value of

carbon conversion in the coal combustor has been reported
to be 99 percent, but an expert suggested that the carbon
conversion could|be close to 100 percent.

Probabilistic

Results. For the probabilistic

simulation, the deterministic model is executed a number
of times, with a different set of values (samples) assigned

to uncertain inpu
of the EFCC sys
sample size of
uncertain output
deterministic run

parameters each time. For the analysis
em with 35 uncertain input variables, a
100 was chosen. Results for all the
wvariables are collected at the end of each
which can then be analyzed statistically

to gain an insight into the key uncertainties of the

system. Such an

model uncertainties that are the

analysis enables the identification of key
most  important

determinants of uncertainty in model outputs.

The result for p

lant thermal efficiency is graphed as a

cumulative distribution function in Figure 4. The mean
value of plant efficiency is 41.5 and the median is 41.6,

both of which are

significantly lower than the

deterministic value of 42.4. From previous sensitivity

analysis studies,
strongly depend

loss, and carbon conversion.’

losses leads to a
losses were a:
distributions.

distribution for
assumptions, thg
plant efficiency
Thus, the detern
the plant efficien

the net plant efficiency was found to
on the combustor heat loss, CerHx heat
An increase in the heat
Jecrease in the plant efficiency. The heat
ssigned  positively skewed triangular
This leads to a negatively skewed
plant efficiency. Based on these input
re is a 95 percent probability that the
vill be lower than the deterministic value.
ninistic analysis appears to overestimate

cy.
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Identification
The key variab

of Key Sources of Uncertainty.
es contributing to the uncertainties in

EFCC process performance were identified using three

general approach

es. Statistical analysis using regression

techniques was used to identify input variables which are

most highly

correlated  with  output

variables. The

interaction between different subsets of uncertain input
variables, as they affect uncertainty in output variables,
was studied by isolating the uncertainties in different
process sections. Probabilistic simulations were then
performed using only the uncertainties in those process
areas. The third approach, uncertainty screening, can be
used to confirm the results of a regression or probabilistic
sensitivity analysis by deleting uncertainties from the
model which are believed to be unimportant. If the results
with and without suspected unimportant uncertainties are
similar, then the deleted uncertainties need not be
considered probabilistically in further studies

Uncertainties in the combustor process area result in the
greatest variance in the net plant efficiency, leading to
results very similar to those obtained when all areas of
uncertainty are considered. Uncertainties in combustor
heat loss, CerHx heat loss, carbon conversion, and CerHx
air leakage are the primary contributors to uncertainty in
net plant thermal efficiency.

Uncertainties which were found to be statistically
insignificant in the regression analysis were removed from
the probabilistic model and were assigned their respective
deterministic "best guess" values. When only the seven
most  significant input uncertainties were treated
probabilistically, the probabilistic model results for plant
efficiency and output were almost indistinguishable from
the base case analysis of 35 input uncertainties. Thus, it
is possible to substantially narrow the focus of further
research and design activities to a handful of key
performance parameters.

Stochastic Optimization

As an example, we consider one case study. In this case
study, the objective is to maximize the net plant output
by selecting the design of the gas turbine and by
specifying a steam injection rate. Rather than optimize
based upon point-estimates, the objective function is
based on the mean, or expected value, for plant output.
The problem may be summarized as:

Max E[MW, ]
S.t.
13.5<P,<15.0
0 < Mg,y < 600,000

steam —

where EIMW __] is the expected value (mean) of the net
plant power output, P_is the gas turbine pressure ratio,
and m___ is the gas turbine steam injection rate in 1b/hr.
The ASPEN simulation model for the EFCC represents
the constraints for the joint values of the decision
variables and the average net plant thermal input. The
simulation of uncertainties in this optimization case study
is based upon the seven most important uncertain
variables, as identified by probabilistic sensitivity
analysis. A sample size of 25 was used. The
optimization requires that the uncertainty analysis be
performed for alternative values of the decision variables
until there is convergence on the optimal solution.




The optimal solution was found to be for a pressure ratio
injection rate of 480,000 1b/hr, which
yields an average net plant output of 301 MW. The
uncertainty in the net plant output for the selected values
of the decision variables ranges from 295 to 305 MW.
These values are considerably higher than the net plant
output of the base case, which has an average of 264 MW.
Thus, optimization of the plant offers the potential for
substantial improvements in performance. The explicit
consideration of uncertainties in this case study provides
confidence in the robustness of the model results to
uncertainty and risk.

CONCLUSIONS

A new performarice and cost model for the EFCC has been
developed. This model has been applied in a series of case
studies to illustrate a variety of methods for technology
assessment. The model applications also provide insight
into the risks and potential pay-offs of the EFCC.

Deterministic analysis provides point-estimates for key
measures of plant performance. However, the degree of
confidence that |should be placed in such values is
typically unreported and unknown. Deterministic
sensitivity analydis was employed to demonstrate how the
new simulation model of the EFCC responds to changes
in key inputs. |Such an analysis can only provide an
insight into the system behavior with respect to variation
in one input parameter at a time, and cannot take into
account the skewness in input parameter uncertainties, or
the range and likelihood of results due to uncertainties in
model inputs..

Comparisons of probabilistic results to deterministic
estimates indicate that the deterministic estimates are
biased toward optimistic outcomes. Because probabilistic
analysis enables |consideration of the simultancous effect
of multiple uncertainties, it provides more realistic
estimates of |technology performance than does
deterministic  apalysis. Furthermore, probabilistic
analysis enables| identification of the input uncertainties
which significantly affect output parameters. The case
study here demonstrated that of 35 uncertainties, only a
handful significantly affect uncertainty in plant efficiency.
These key uncertainties are in the slagging combustor and
CerHx process | areas.  Thus, efforts to reduce the
technological risk of the EFCC should be focused on
these process areas.

Stochastic optimization combines features of both
sensitivity and |uncertainty analysis to the systematic
search for the best plant design. Stochastic optimization
accounts for the effect of uncertainties in model inputs on
the value of the|objective function. In the example case
study here, the| expected value of plant output was
optimized in the face of uncertainties in factors affecting
plant performande.

The analysis and evaluation methods demonstrated here
represent improved approaches for technology assessment.
Future work will involve the refinement of the methods
used here and their application to further case studies.
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