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REACTIONS AND SEPARATIONS

Evaluate Uncertainties
In Advanced Process
Technologies

v

B
Traditional
approaches to
technology
evaluation
inadequately
deal with
uncertainties.
Here is a way to
avoid surprises.

H. Christopher Frey and
Edward S. Rubin,
Carnegie Mellon University

hemical engineers and techni-
cal managers involved in
research, development and
demonstration (RD&D) of
advanced processes can benefit from a
systematic approach for characterizing
uncertainties in new process technolo-
gies. Quantitative characterizations of
these uncertainties provide an under-
standing of the potential performance
and cost payoffs of advanced technolo-
gy, as well as the risks of new technolo-
gy relative to a baseline commercial
system. In addition, detailed uncertainty
analysis can allow managers to better
focus and prioritize research to reduce
technology risks and increase payoffs.
We will describe a methodological
approach to uncertainty analysis of
advanced chemical process technology
performance and cost, and we will dis-
cuss the types of insights provided by
such analyses. We also will present a
detailed case study of an advanced
integrated gasification combined cycle
(IGCC) power system to illustrate the
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and Developmen

Screening
R&D Cost

$ for Scope
Definitio

Project
Definition

Unresolved R&D
Technical or
. Uncertainties Pilot Plant?

~ ( Commercialization

methodology.

M Figure 1. A number of decisions must be made during

the RD&D process.

Decisionmaking during RD&D

Let’s first define innovative technology.
It is a concept that departs in some funda-
mental way from existing technology and
that holds the promise of a significant
improvement in performance or cost. The
transformation of an innovative concept
into a commercial technology involves

many decisions at various stages of devel-
opment. This is illustrated in Figure 1,
based on a discussion in Merrow er al. (1).
Typically, a new concept may be evalu-
ated theoretically and then tested at a small
(for instance, bench top) scale. If promising
technical results are obtained, a preliminary
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cost estimate of a commercial-scale
design may be made. If the cost
appears high, the project may be
dropped or research may continue to
identify more attractive variants of the
technology. If the costs are promising,
research is likely to continue to a larg-
er scale of development. Pilot plants
of varying size and design may be
built and, as confidence in the technol-
ogy improves, a more definitive cost
estimate may be commissioned prior
to designing a full-scale plant. At this
stage, there still may be significant
uncertainties in cost and performance
that only a full-scale demonstration
plant can resolve.

Important decisions made during
RD&D include whether a new tech-
nology should be developed or
rejected, where the process develop-
ment should be focused, and what
improvements should be made to
optimize the process. The uncertain-
ties inherent in these types of evalua-
tions and decisions often are not
properly characterized, however. As
a result, misleading estimates of per-
formance and cost may be used to
justify research on new technologies
that might not otherwise have been
pursued, or to focus research on the
wrong areas of potentially promising
technology.

Sources of uncertainty

Predicting the commercial perfor-
mance of an innovative concept pos-
es enormous challenges. In the early
stages of process development, pre-
dictions may be based on limited
experimental work and may rely
heavily on mass and energy bal-
ances. As a concept proceeds to
small-scale testing or to a process
development unit (PDU), laboratory
data may become available to help
identify more realistic values for key
process parameters. Uncertainties in
the interpretation of test data, howev-
er, may arise from:

1. statistical errors in the data.

2. differences in configuration
between the PDU and a commercial-
scale plant.

3. potential problems in scale up
from the PDU to commercial-size
equipment.

The lack of full-scale operating
experience to verify predictions of
commercial-scale performance of new
technology means that many of these
uncertainties only can be resolved by
building a full-scale demonstration
plant at considerable cost.

Uncertainties in key performance
parameters of an innovative process
give rise to uncertainties in key out-
put characteristics such as plant effi-
ciency, cost, or emissions of pollu-
tants. For example, uncertainties in
key system flow rates may lead to
uncertainties in the required size of
process equipment, the consumption
of reagents (for example, sorbent),
and auxiliary power requirements.
This produces uncertainties in capital
and operating costs — the ultimate
measures of interest for comparative
analysis. Even if process perfor-
mance were known with certainty,
uncertainties regarding many compo-
nents of cost (such as equipment not
previously used in commercial-scale
service) would still remain.

Thus, the aspects of a process eval-
uation that may be subject to uncer-
tainty include process performance
variables, equipment sizing parame-
ters, process-area capital costs,
requirements for initial catalysts and
chemicals, indirect capital costs, pro-
cess maintenance costs, consumables
needed during plant operation, and
the unit costs of consumables, by-
products, wastes, and fuel. Any one or
all of these parameters may be uncer-
tain, depending on the state of devel-
opment of the technology, the level of
detail of the performance and cost
estimates, future market conditions,
and so on. Hence, performance and
cost figures developed in early stages
of technology development easily
could prove incorrect.

The Rand Corporation has studied
the problems of estimating the per-
formance and cost of first-of-a-kind
innovative process plants (/). Typical
of their findings are that:

* bias and uncertainty in perfor-
mance and cost estimates result from
low levels of process and project
understanding, particularly for new
technologies;

e cost-underestimation of new
technologies is widespread and sys-
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tematically related to low levels of
project definition and the use of
unproven technology; and

e performance over-estimation is
also widespread and largely associat-
ed with unproven technology in a
process concept.

Traditional approaches to
handling uncertainty

In developing commercial-scale
performance and cost estimates of

technologies that are still in early -

stages of development, the most
common approach is for engineers to
use a “best guess” point-value for
key process and cost parameters for a
specified flow sheet. These assump-
tions may reflect either some degree
of optimism or some degree of con-
servatism. The basis for most
assumptions and the scope of
thought that went into them typically
are not documented, however, in
conceptual design studies. Thus, the
degree of confidence that should be
placed in the performance and cost
estimate is often not rigorously con-
sidered or reported.

The most common approach to
handling uncertainties is either to
ignore them or to use simple sensi-
tivity analysis. In sensitivity analysis,
the value of a particular parameter is
varied across some low to high
range, while all other parameters are
kept at their nominal values, and the
effect on some key output parameter
is observed. In practical problems,
however, many input variables may
be uncertain. The combinatorial
explosion of possible sensitivity sce-
narios (for instance, one variable
high, another low, and so on) quickly
becomes unmanageable. Because of
this, it is often difficult to identify
the input variables for which results
are most sensitive. Nor is sensitivity
analysis able to capture the result of
many variables that are uncertain
simultaneously. Furthermore, sensi-
tivity analysis provides no insight
into the likelihood of obtaining any
particular result across a range of
high to low values.

A specific approach to handling
uncertainty in capital cost estimates,
whether for new or existing technol-
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ogy or for preliminary or detailed
cost estimating, employs contingen-
cy factors. The contingency often is
the single largest expense in the cost
estimate and yet it is also the least
documented or understood. In gener-
al, a contingency is used to represent
additional costs that are expected to
occur, but that are not included
explicitly in other parts of the cost
estimate (2).

In many cases, the approaches
used to come up with contingency
factors have not been validated by
actual data (3). The Rand Corporation
conducted a survey of 18 companies
in the chemical and petroleum indus-
tries to determine the actual methods
used to develop contingency factors
(2). The study indicates that contin-
gency factors are often badly underes-
timated and thus may be leading to
bad decisions about certain projects.
Rand recommends the increased and
more formalized use of experience in
developing estimates, the use of a del-
phi technique to get multiple expert
inputs, and the inclusion of costs
associated with risks and innovation.

Some companies are beginning to
use probabilistic modeling approach-
es to explicitly characterize uncer-
tainties in new process technologies.
For example, some studies of
advanced-power-generation tech-
nologies prepared for the Electric
Power Research Institute (EPRI)
have included a risk analysis involv-
ing probabilistic simulation (for

instance, Reference 4). The specifi-
cation of uncertainties, however, has
been only on cost-related parameters.
Furthermore, the analysis of uncer-
tainty has been confined just to capi-
tal costs, not operating and mainte-
nance costs (which may be a
considerable portion of the total
cost). Most analyses are insufficient-
ly documented to allow critical eval-
uation of the modeling results.

A quantitative approach to
uncertainty analysis

The potential losses associated
with poorly-informed RD&D deci-
sions, and the shortcomings associat-
ed with traditional approaches to
handling uncertainties, suggest a
strong need for quantitative uncer-
tainty analysis in the evaluation of
both the performance and cost of
advanced process technologies. A
number of motivating questions for
such an approach include:

1. What is the expected commer-
cial performance and cost based on
what is currently known?

2. How reliable are these estimates
for mature, commercial plants?

3. What are the key factors driv-
ing uncertainty in performance and
cost?

4. Which of these factors can be
the focus of targeted research to
reduce the risks or increase the pay-
off of the technology?

5. What are the risks and payoffs

of the new technology compared to
conventional technology?

To answer all of these questions
rigorously requires a comprehensive
and quantitative approach to uncer-
tainty analysis. Predictions about the
performance and cost of innovative
technologies should reflect the
degree of confidence that engineers
have in the input assumptions used to
generate the predictions. In this
work, the approach taken is to
explicitly quantify both the range
and likelihood of values for parame-
ters used as inputs to engineering
models. Using probabilistic simula-
tion techniques, the effect of simulta-
neous input parameter uncertainties
can be propagated through the model
to yield an explicit indication of the
uncertainty in output values, as illus-
trated in Figure 2.

Characterizing uncertainties

Estimating uncertainties for new
chemical processes involves several
steps. These include:

1. reviewing the technical basis
for uncertainty in the process.

2. identifying candidate parame-
ters that should be treated as
uncertain.

3. determining the source of infor-
mation regarding uncertainty for
each parameter.

4. developing — depending on
the availability of information —
estimates of uncertainty.
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Estimates of uncertainty can
- be based on:

e published judgments in the
literature (which are rarely
available);

* published information, both
quantitative and qualitative, that
can be used to infer a judgment
about uncertainty;

e statistical analysis of data;
and

* judgments elicited from
technical experts.

Probability

Probability De

Value of rible

with mean, mode, and median at
the same point. Often assumed in
statistical analysis as the basis for
unbiased measurement errors, the
normal distribution has infinite
tails; however, over 99 percent of
all values of the normal distribu-
tion lie within +30 (standard
deviations) of the mean. Thus,
when used to represent uncertain-
ty in physical quantities that must
be greater than zero, ¢ should not
be more than about 20-30% of

The classical approach in
probability theory requires that
estimates for probability distri-
butions must be based on empirical
data. Statistical analysis techniques
are well known and are not reviewed
here. In many practical cases, how-
ever, the available data may not be
relevant to the problem at hand. For
example, test results from a PDU
under a given set of conditions may
not be directly applicable for esti-
mating the performance of a sixth-
of-a-kind commercial scale plant
under a different set of operating
conditions. Thus, statistical manipu-
lation of data may be an insufficient
basis for estimating uncertainty in a
real system of interest. Engineering
analysis or judgments about the data
may be required.

An alternative approach differs in
how probability distributions are inter-
preted. In the so-called “Bayesian”
view, the assessment of the probability
of an outcome is based on a “degree of
belief” that the outcome will occur,
based on all of the relevant informa-
tion an analyst currently has about the
system. Thus, the probability distribu-
tion may be based on empirical data or
other considerations such as technical-
ly-informed judgments (5). The
approaches to developing probability
distributions for model parameters are
similar in many ways to the approach
one might take to pick a single “best
guess” number for deterministic (point
estimate) analysis or to select a range
of values to use in a sensitivity analy-
sis. The development of estimates of
uncertainty, however, usually requires
more detailed thinking about possible
outcomes and their relative likeli-
hoods. This is an advantage for the
analyst, because by thinking systemat-

B Figure 3. Common types of probability distributions
used to represent judgments about uncertainties.

ically and critically about uncertain-
ties, one is more likely to anticipate
otherwise overlooked problems or to

" identify otherwise overlooked payoffs

of a system.

Using probability
distributions

In the cases where expert judg-
ments regarding uncertainties are
required, an expert may specify a
judgment using different types of
probability distributions. A few
examples are shown schematically in
Figure 3. The uses of these are
described here briefly:

Uniform. Uniform probability of
obtaining a value between upper and
lower limits. This distribution is use-
ful when an expert is willing to spec-
ify a finite range of possible values,
but is unable to decide which values
in the range are more likely to occur
than others. The use of the uniform
distribution is also a signal that the
details about uncertainty in the vari-
able are not known. It is useful for
screening studies.

Triangle. Similar to uniform
except a mode is also specified. Use
it when an expert is willing to speci-
fy both a finite range of possible val-
ues and a “most likely” (mode) val-
ue. The triangle distribution may be
symmetric or skewed, as in Figure
3(b). Like the uniform, this distribu-
tion indicates that additional details
about uncertainty are not yet known.
The triangle distribution is excellent
for screening studies and easy to
obtain judgments for.

Normal. A symmetric distribution
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the mean or else the distribution
must be truncated.

Fractile. Here, the finite
range of possible values is divided
into subintervals. Within each subin-
terval, the values are sampled uni-
formly according to a specified fre-
quency for.each subinterval. This
distribution looks like a histogram
and can be used to represent any
arbitrary data or judgment about
uncertainties in a parameter when the
parameter is continuous. It explicitly
shows detail of the judgments about
uncertainties.

Probabilistic modeling

In order to analyze uncertainties
in innovative process technologies, a
probabilistic modeling environment
is required. A typical approach is the
use of Monte Carlo simulation, as
described by Ang and Tang (6), and
others. In Monte Carlo simulation, a
model is run repeatedly, using differ-
ent values for each of the uncertain
input parameters each time. The val-
ues of each of the uncertain input
parameters are generated based on
the probability distribution for the
parameter. If there are two or more
uncertain input parameters, one val-
ue from each is sampled simultane-
ously in each repetition in the simu-
lation. Over the course of a
simulation, 20-100 or more repeti-
tions are made. The sample size is
selected based on the desired preci-
sion of the estimate of the output dis-
tribution. The result, then, is a set of
values for each of the model output
variables that can be treated statisti-
cally as if it were an experimentally
or empirically observed set of data.
Appropriate sampling procedures




can be adopted to properly account
for correlation structures among
input variables.

Although the generation of sam-
ple values for model input parame-
ters is probabilistic, the execution of
the model for a given set of samples
is deterministic. The advantage of
Monte Carlo methods is that the rep-
etition of deterministic simulations
yields important insights into the
interactions of many uncertain input
parameters, as well as into the likeli-
hood of obtaining any particular out-
come. Monte Carlo methods also
allow the modeler to use any type of
probability distribution for which
values can be generated on a com-
puter, rather than being restricted to
forms that are analytically tractable.

Using Monte Carlo or similar tech-
niques, it is therefore possible to repre-
sent uncertainty in a model of a pro-
cess technology by generating sample
values for uncertain variables and run-
ning the model repetitively. Instead of
obtaining a single number for model
outputs, as in deterministic simulation,

a set of samples is obtained. These can
be represented as cumulative distribu-
tion functions and summarized using
typical statistics such as mean and
variance. Furthermore, the input uncer-
tainties which are the most significant
contributors to key results can be iden-
tified and ranked using a variety of sta-
tistical analysis techniques, such as
sample correlation coefficients or mul-
tivariate regression.

Thus, probabilistic modeling gives
a decisionmaker both explicit mea-
sures of uncertainty in key decision
variables (for instance, levelized cost
or process efficiency) and a listing of
key input uncertainties. The former
can be used to understand the risks

~and payoffs of the new technology,

while the latter can be used to focus
research on reducing the specific input
parameter uncertainties that contribute
most to the risk of technology failure.

An example

To illustrate the types of insights
provided by probabilistic analysis of

Gasifier Steam

Shift & Regen.
Steam

process technologies in early stages
of development, a detailed case study
of an advanced integrated gasifica-
tion combined cycle (IGCC) concept
is briefly described. Complete details
are available elsewhere (7).
Integrated gasification combined
cycle (IGCC) systems are an emerg-
ing technology for the clean and
more efficient use of coal for electric
power generation. Only a few IGCC
concepts have been demonstrated at
a commercial scale, with many more
advanced concepts under evaluation
at the laboratory- and small pilot
plant scale. One such concept is the
air-blown dry-ash Lurgi-gasifier-
based system, shown in Figure 4. In
this particular design, an advanced
dry, high-temperature desulfurization
process is used to remove H,S from
the gasified coal prior to combustion
of the fuel gas in a gas-turbine com-
bined-cycle system. The desulfuriza-
tion process uses small pellets of a
mixed metal oxide, zinc ferrite, in a
fixed-bed reactor that cycles between
absorption and regeneration modes.
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B Figure 4. Schematic diagram of the air-blown Lurgi-gasifier-based IGCC system.
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An engineering performance
model of the IGCC concept was
developed at the U.S. Department of
Energy’s Morgantown Energy
Technology Center (DOE/METC)
using the ASPEN chemical process
simulator. The performance model
was adopted and modified for this
study to better estimate gas-turbine
and zinc ferrite desulfurization per-
formance, plant discharge mass-flow
rates, and other process parameters
required to calculate costs. A key
limitation of the DOE performance
model was the lack of a directly cou-
pled cost model. Therefore, a cost
model was developed based on a
review of approximately 30 concep-

tual design studies of IGCC and sim-..

ilar systems (8). The cost model
characterizes direct and total capital
cost, fixed operating costs, variable
operating costs, and the annualized
cost of electricity. The cost mode] is
sensitive to over 100 performance
and cost parameters.

For the Lurgi-based 1GCC Sys-
tem, 47 parameters in the perfor-
mance and cost models were charac-
terized probabilistically. While most
of these uncertainties were based on
data analysis and literature review,
approximately one-third of the
uncertainty estimates were based on
expert judgments elicited from pro-
cess engineers. These Jjudgments pri-
marily concerned process perfor-
mance uncertainties in the

gasification and zinc ferrite desulfur-
ization process areas.

o5

Sorbent Replacement Rate, wt-%/cycle

g L 2e:

B Figure 5. An expert’s judgment regarding the uncertainty in predicting zinc ferrite
sorbent attrition rate in q Sull-scale IGCC desulfurization system.

An example of one expert judg-
ment — for the uncertainty in the
desulfurization-sorbent attrition rate in
a future commercial plant — is shown
in Figure 5. This is an important
parameter since it significantly affects
plant cost. This expert indicated that
high attrition rates of up to 25%
weight loss per absorption/regenera-
tion cycle could occur if there were
carbon deposition on the sorbent lead-
ing to the formation of iron carbides or
if there were process upsets leading to
Water condensation on the sorbent.
The expert also indicated, however,
that there was a 75% probability that
the attrition rate could be less than
1.5% loss per cycle, with the rate most
likely to be around 0.5% per cycle.

The judgment shown in Figure 5
illustrates several features of uncer-

Cumulative Pro
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Cost of Electricity, Constant 1989 mills/kWh

—— Deterministic
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B Figure 6. Uncertainty in the levelized cost of electricity.
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tainty characterization. The expert
was able to provide a technical basis
for the different values assumed for
this particular performance parame-
ter. He also was able to make judg-
ments about the relative likelihood of
different outcomes. The resulting
probability distribution is skewed,
which is often the case when experts
are asked to make judgments about
uncertainties. Thus, the use of a sin-
gle “most likely” value in conven-
tional deterministic estimates may be
highly misleading because it com-
pletely ignores the possibility of less
optimistic outcomes.

The IGCC performance and cost
models were run on a DEC mini-
computer. As part of earlier work at
Carnegie Mellon University, a prob-
abilistic modeling capability was
added to the public version of
ASPEN, permitting the analysis of
uncertainties in any process flow
sheet (9). Other software environ-
ments also have been developed to
analyze process performance proba-
bilistically (10). In the case of proba-
bilistic simulation, the flow sheet is
executed many times, with a differ-
ent set of values (samples) assigned
to all uncertain input parameters
each time. For the IGCC System ana-
lyzed here, a sample size of 100 iter-
ations took 6 hours to run. However,
while probabilistic simulation
requires an initial computer-intensive
phase, the interpretation of results is
much easier and more meaningful
compared to sensitivity analysis.




The probabilistic modeling envi-
ronment can be used to characterize
the uncertainty in any desired mea-
sure of plant performance, emissions,
or cost. For the IGCC system exam-
ined here, the levelized cost of elec-
tricity is the single most comprehen-
sive measure of interest, because it
reflects on (and is sensitive to) all of
the factors that determine capital
costs, fixed operating costs, and vari-
able operating costs. Because it is
expressed on a net electricity-pro-
duction basis, it is also sensitive to
the plant thermal efficiency.

The uncertainty in the net cost of
electricity is shown as a cumulative
distribution function (cdf) in Figure 6.
The ordinate, cumulative probability,
shows the probability of being at or
below the corresponding abscissa val-
ue, cost of electricity. The probabilis-
tic results are based on the propaga-
tion of 47 input uncertainties through
the model. Also shown is a determin-
istic estimate based on “best guess” or
“most likely” values for all process
performance and cost parameters. The
range of uncertainty in the total cost
varies by a factor of 2.5 from the low-
est to the highest values. The central
values of the probability distribution
are higher than the “best guess” esti-
mate. There is a high probability that
the cost of electricity will be higher
than the deterministic estimate, due to
the interactions of skewed judgments
regarding uncertainties and various
nonlinearities in the engineering mod-
el. In this case, these interactions
result in an 85% probability that the
cost of electricity will be higher than
the “best guess” deterministic esti-
mate, with a 20% probability of
exceeding 60 mills/kWh.

Prioritizing research

A benefit of probabilistic analysis
is the ability to identify key sources
of uncertainty when many parame-
ters are varying simultaneously.
These key uncertainties then can be
prioritized for further research using
statistical techniques such as correla-
tion or regression analysis. The key
input uncertainties that affect uncer-
tainty in the total cost of electricity
for the IGCC case study are shown

Table 1. Key input
uncertainties that affect
levelized total cost.

direct capital ¢
sifier maintenance cost
ject-related indirect costs.
Zinc ferrite sorbent unit costs.
- Gasifier direct capital cost.

in Table 1. These include both per-
formance and cost parameters in the
zinc ferrite, gas-turbine, and gasifier
process areas. Thus, simultaneous
interactions among several process
areas are shown to be important here.

The interactions among uncertain-
ties also can be illustrated graphical-
ly. Figure 7 shows the uncertainty in
the cost of electricity resulting from:

1. performance uncertainties only
(for instance, mass and energy
flows).

2. cost parameter uncertainties only
(for example, the unit cost of sorbent
or the cost of a specified vessel).

3. the combined interactions
simultaneously.

The results in the figure show that
the long tail towards high cost is
attributable to performance-related
uncertainties, while both perfor-
mance and cost uncertainties have
interactive effects on the central val-
ues of the distribution. As seen in
Table 1, the key performance uncer-

tainties are in the zinc ferrite process
area. These uncertainties may be
reduced through a targeted research
program.

While the results shown here
reflect the judgments of one set of
technical experts, the analysis easily
can be repeated using other experts to
identify areas of agreement or dis-
agreement; see (7). For the IGCC sys-
tem shown here, three sets of expert
judgments all led to the same conclu-
sion of a skewed cost distribution,
driven primarily by uncertainties in
process performance parameters.

Comparing technologies

In the preceding sections, we have
focused on applications of uncertain-
ty analysis to an individual technolo-
gy. The method also is useful for
comparing competing technologies.
Here, the advanced Lurgi-based sys-
tem is compared probabilistically to
a more conventional IGCC design. In
cases where uncertainties are com-
mon to both systems (such as interest
rates or ash disposal cost), the com-
parison takes into account the under-
lying correlation structure.

The probability distribution for
the cost savings of the advanced sys-
tem over the conventional IGCC
design is shown in Figure 8. There is
roughly a 70% chance that the new
technology will be less expensive
than the conventional one.
Conversely, there is about a 30%
chance that the new technology
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M Figure 7. Sources of uncertainty in the levelized cost of electricity.
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could be more expensive, primarily
because of potential cost increases in
the zinc ferrite process area.
Additional research might change
this result, primarily by reducing the
risks' of the zinc ferrite process.
Ilustrative research results for three
major process areas would increase
the probability of cost savings to
over 90%. Similar results are
obtained even if research simultane-
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ously reduces uncertainties in the
conventional technology. Separate
analyses also can quantify the

. expected cost savings with and with-

out research, and the magnitude of
the mostly likely downside risks (7).

Avoiding surprises

Traditional approaches to technol-
ogy evaluation inadequately account
for uncertainties. The result is a his-
tory of overoptimistic estimates of
performance and cost of new tech-
nologies that often lead to significant
wastes of time and resources. The
probabilistic evaluation method
advanced here permits explicit char-
acterization of the uncertainties in
performance, emissions, and costs of
developing technologies. Many of
the “surprises” that account for “per-
formance shortfall” and “cost
growth” can be captured by the use
of this approach. Quantitative tech-
niques can be applied to identify the
sources of uncertainty in key mea-
sures of plant performance and cost
for the purpose of targeting addition-
al research. Technologies can be
compared probabilistically to gain
insight into the expected payoffs and
risks of advanced technologies.
These types of insights allow
research planners to make better,
more informed decisions that
increase the probability of successful
RD&D. While probabilistic model-
ing certainly is not a panacea for
obtaining perfect foresight, it can be
an important technique for develop-
ing more realistic estimates and
insights needed for research planning
and technology selection. [CEP]
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