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ABSTRACT

Uncertainties in the performance, emissions, and cost of advanced process technologies in
early stages of development pose a challenge to process modelers. The failure to properly account
for uncertainties in process evaluation may result in misleading estimates that are then used for
making decisions about technology selection and research planning. A new stochastic modeling
capability has been developed for the ASPEN chemical process simulator that allows uncertainties
in any process technology to be represented using probability distributions. This capability is
briefly described. A detailed case study of an advanced integrated coal gasification combined cycle
(IGCC) system is presented to illustrate the application of this capability. The case study involves
identification and characterization of uncertainties in model inputs, propagation of uncertainties
through the model, and interpretation of model results. The value of stochastic modeling is in the
ability to evaluate the simultaneous effect of multiple uncertainties in a process technology, and to
develop more realistic estimates of process performance and cost than would otherwise be obtained
from deterministic (point-estimate) analysis.

INTRODUCTION

Advanced process concepts tested only at bench- or pilot-scales lack the large-scale
commercial operating experience required to verify predictions of performance and cost. In spite
of this, performance and costs of new technologies often are estimated as deterministic point-
values, without regard to their uncertainty. Thus, estimates that may be accurate only within a
factor of 2 or 3 are often misrepresented as single point-values with several decimal places.
Deterministic estimates of both performance and cost for advanced technologies are also known to
have a systematic bias toward optimism. An important challenge for process modeling, therefore,
is to explicitly characterize and simulate the uncertainties that lead to risks of cost growth and
performance shortfall in new process concepts.

Process modeling of advanced technologies must be able to address questions regarding:
the uncertainty in key measures of plant performance and cost used as a basis for decision making;
identification of robust design solutions under uncertainty; identification of key problem areas that
should be the focus of further research to reduce the risk of technology failure; comparison of
competing technologies on a consistent basis to determine the risks associated with advanced
technology; and evaluation of the effects that additional research might have on comparisons with
conventional technology

A probabilistic process modeling approach is described in this paper which allows the
explicit and quantitative representation of uncertainties inherent in advanced technologies. As part
of this work, a probabilistic modeling capability has been added to the publicly available version of
ASPEN, a chemical process simulator. Both methodological and practical issues related to
probabilistic process modeling are illustrated using a detailed case study of a coal-based advanced
integrated gasification combined cycle (IGCC) concept. The case study illustrates the application
of probabilistic process simulation to estimation of uncertainty in plant performance and cost,
prioritization of key uncertainties for further research, and design analysis under uncertainty. The
data requirements for probabilistic analysis are discussed. This method is shown to be a versatile
tool for technology evaluation, cost estimating, process design, risk assessment, research
planning, and technology selection.

NEED FOR UNCERTAINTY ANALYSIS

Conventional chemical process simulation models, such as FLOWTRAN, PROCESS,
CHEMSHARE, and ASPEN, typically employ a Fortran code which produces deterministic (point
estimate) results for a particular set of input assumptions. Such an approach can be overly
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simplistic, however, because it ignores uncertainties often known to exist in process performance
or design, particularly for advanced technologies.

Nearly all analyses of process technologies that are in early phases of research involve
uncertainties. According to the Rand Corporation (Hess and Myers, 1989): -

Accurate assessment of the costs of advanced technologies has always been one of
the most difficult and uncertain tasks facing an R&D planner.

Predictions of the future commercial-scale performance of a new technology are often based on
limited experimental data from small-scale testing. Predictions of future cost are typically
expressed as deterministic point-value estimates based on assumed values of key performance and
design variables, without regard to their uncertainty. Such performance and cost estimates of a
new technology, however, are inherently uncertain because of the lack of large-scale experience to
verify expectations.

Rand and others have identified a systematic tendency for the performance of advanced
process technologies to be overestimated and for costs to be underestimated (Merrow, et al.,
1981). Misleading estimates of the performance and cost of new processes can have deleterious
implications for research planning and the allocation of resources to the development of alternative
technologies.

Thus, the ability to analyze uncertainties is especially important in the context of ongoing
research and development, where technical and economic parameters for individual processes and
system designs are not well-established. Uncertainties also are important in comparing advanced
system designs with baseline systems reflecting currently commercial technology. To analyze
uncertainty, the capability to perform sensitivity analysis through a series of multiple runs is
usually available. Typically, however, only one or two parameters at a time are varied in a
simulation framework which may contain a large number of independent variables. Thus,
important interactions or cases may be overlooked. Furthermore, the combinatorial explosion of
possible sensitivity scenarios (e.g., one variable "high", another "low", and so on) may make
results cumbersome or difficult to interpret and/or display. Furthermore, sensitivity analysis
provides no information as to the likelihood of different outcomes. In short, the process analysis
of real systems requires both stochastic and deterministic modeling capabilities.

Though uncertainty analysis techniques are gaining attention in the literature, none of the
well-known process simulators have the capability to handle uncertainties systematically (Diwekar
and Rubin, 1991).

STOCHASTIC MODELING OF CHEMICAL PROCESSES USING ASPEN

A new stochastic modeling capability for uncertainty analysis has been added by Rubin and
Diwekar (1989) to the public version of the ASPEN simulator developed for the U.S. Department
of Energy (MIT, 1982). To implement the stochastic modeling capability, ASPEN's modular
nature (consisting of unit operation modules or blocks) has been utilized. The stochastic
simulation module is based on the public domain programs by Iman et al. (Iman and Shortencarier,
1984; Iman ez al., 1985). A new unit operation block, called STOCHA, has been added to the
ASPEN unit operation library. The structure of this block and its use are briefly described. Details
are provided elsewhere (Rubin and Diwekar, 1989).

The unit operation block, STOCHA, characterizes the uncertainty in model input
parameters in terms of probability distributions, and analyzes their effect on selected output
variables. To link STOCHA to the ASPEN flowsheet, two Fortran blocks are needed. The
stochastic modeling approach involves:
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Figure 1. Basic Operation of the Stochastic Simulation Method.

1. Specification of uncertainties in key input parameters in terms of probability
distributions;

2. Specification of the correlation structure of any interdependent parameters;

3. Sampling of the distributions in an iterative fashion, using random Monte Carlo
simulation or Latin Hypercube sampling (see Ang and Tang, 1984; Iman and
Shortencarier, 1984; or Morgan and Henrion, 1990);

4. Propagation of the effects of uncertainties through the process flowsheet; and
5. Application of graphical and statistical techniques to analyze the results.

Figure 1 shows the use of the stochastic block for uncertainty analysis of a flowsheet. The
cycle for stochastic simulation consists of: (a) the stochastic block, STOCHA, for generating i
samples from the probability distributions for » uncertain flowsheet variables selected by the user;
(b) the Fortran block, STCTALIL, for accessing the uncertain flowsheet variables at the beginning
of a repetition and assigning to them the sample values from their associated probability
distributions; and (c) the Fortran block, STCREC, for data output collection and recycling to the
next repetition.

A variety of types of probability distributions for characterizing uncertainties are available
in the Fortran program developed by Iman and Shortencarier (1984). Examples of some of these
distributions are shown in Figure 2. Details regarding the basis for using various types of
probability distributions are given by Morgan and Henrion (1990), Frey (1991), and Frey and
Rubin (1992).

Once the input samples have passed through the flowsheet and all the sample runs are
completed, the stochastic block can be used to quantify the sensitivity of an output to each input
parameter. Four techniques are available for this purpose, all based on multivariate linear
regression analysis. These include partial correlation coefficients, standardized regression
coefficients, partial rank correlation coefficients, and standardized rank regression coefficients.
These are discussed in detail by Iman et al., 1985 and summarized by Diwekar and Rubin (1991)
and Frey (1991).
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Figure 2. Examples of Probability Distribution Functions Available for
Stochastic Simulation in ASPEN.

A DETAILED CASE STUDY

The stochastic modeling capability for the ASPEN simulator is applied here to a detailed
case study of an advanced IGCC concept. The case study illustrates the use of stochastic modeling
for characterizing uncertainty in key measures of process viability, identifying key uncertainties
that can be prioritized for further research, and comparison of alternative process designs.

IGCC Technology

IGCC systems are emerging technologies for the cleaner and more efficient use of coal for
power generation. These systems feature: conversion of coal to a fuel gas by reaction with steam
and oxygen in a pressurized reducing atmosphere; cleanup of the fuel gas to remove particulates,
sulfur compounds, and other contaminants; and combustion of the fuel gas in a gas turbine
combined-cycle system. IGCC systems are capable of higher thermal efficiency and lower
gaseous, liquid, and solid discharges than conventional pulverized coal-fired power plants
(Pietruszkiewicz et al., 1988). However, few IGCC systems have been commercially
demonstrated. Those that have been demonstrated feature entrained-flow gasifiers using "cold"

(100 °F) wet fuel gas cleanup technology (Cool Water, 1988; Hager and Heaven, 1990). For
many other IGCC concepts that are in early stages of development, there are uncertainties
regarding process performance, emissions, and cost that may not be resolved until a commercial-
scale demonstration plant is built. Uncertainties are particularly important for many advanced
concepts featuring high temperature "hot" (e.g., 1,000 °F) dry fuel gas cleanup technology. Hot
gas cleanup offers the potentially key advantages of higher plant thermal efficiencies and lower
costs due to the elimination of fuel gas cooling and associated heat exchangers (Bajura, 1989).

A promising hot gas cleanup configuration is an air-blown Kellogg-Rust-Westinghouse
(KRW) IGCC system (SCS, 1990). A schematic of this technology is shown in Figure 3. The
hot gas cleanup system features in-bed desulfurization in the fluidized bed gasifier with limestone
or dolomite, subsequent sulfur removal from the fuel gas with a zinc ferrite sorbent, and high
efficiency cyclones and ceramic filters for particulate removal. The off-gas from the zinc ferrite
reactor, which contains sulfur compounds, is recycled to the gasifier. The advantages of such a
system, compared to a base case oxygen-blown system with cold gas cleanup, are: (1) it does not

5
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Figure 3. Simplified Schematic of the Air-Blown KRW Gasifier IGCC System
with Hot Gas Cleanup

require an expensive and energy consuming oxygen plant, (2) it eliminates the capital costs
associated with sulfur recovery (all sulfur is disposed with the spent limestone or dolomite), and
(3) it reduces the amount of fuel gas cooling required prior to combustion in the gas turbine,
thereby improving the plant thermal efficiency.

Testing of an air-blown KRW-based system with hot gas cleanup at the process
development unit (PDU) level has been conducted (Haldipur ez al., 1988). M.W. Kellogg has
presented some results of a conceptual performance and cost analysis of such a system, although
no detail was provided on costs (Banchik and Cover, 1988). M.W. Kellogg and Bechtel, under a
cooperative agreement with DOE as part of the clean coal technology program, began design of a
63.5 MW demonstration plant of a KRW gasifier IGCC system with hot gas cleanup using the
fixed-bed zinc ferrite process, although actual construction and testing has not occurred (Haldipur
et al., 1988; Gallaspy et al., 1990). Conceptual performance and cost estimates of similar systems
have also been prepared by Southern Company Services (1990) and Fluor Daniel (Earley and
Smelser, 1988).

Modeling Performance and Cost

The performance, emissions, and cost of the IGCC system are modeled using detailed
engineering models. A performance model was originally developed by DOE's Morgantown
Energy Technology Center (DOE/METC) using the ASPEN chemical process simulator. The
performance models has been significantly modified to more completely and accurately represent
process performance and emissions (Frey, 1991). For example, a new performance model of

6
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selective catalytic reduction (SCR) NOx control has been added to the IGCC model (Frey, 1992).
Furthermore, a new cost model was developed (Frey and Rubin, 1990; Frey, 1991). This cost
model has been recently revised based on more recent data regarding the costs of the gasification
process area (Diwekar, Frey, and Rubin, 1992). The cost model is briefly described.

The cost model was developed based on approximately 30 design studies of IGCC
systems. Direct capital costs are estimated for approximately one dozen major process areas.
Typically, several performance and design variables are included in the direct cost models. Indirect
and other capital costs are estimated based on approximately 60 cost model parameters. These
include process area contingencies, project contingency, indirect construction costs, sales tax,
allowance for funds used during construction, environmental permitting costs, spare parts
inventory costs, costs for initial inventories of fuels and chemicals, land cost, and startup costs.
Fixed and variable operating costs are estimated based on 40 to 50 parameters. Fixed operating
costs include maintenance material and labor for each process area, plant operating labor, and
administrative and support labor. Variable operating costs include consumables (e.g, water
treatment chemicals, zinc ferrite sorbent), ash disposal, fuel, and byproduct credit. Total levelized
costs are calculated using the financial assumptions and methodology of the Electric Power
Research Institute (1986).

INPUT UNCERTAINTY ASSUMPTIONS

There are several types of uncertainty in trying to predict the commercial-scale performance
and cost of a new process technology. These include statistical error, systematic error, variability,
and lack of an empirical basis for concepts that have not been tested. Uncertainties may apply to
different aspects of the process, including performance variables, equipment sizing parameters,
process area capital costs, requirements for initial catalysts and chemicals, indirect capital costs,
process area maintenance costs, requirements for consumables during plant operation, and the unit
costs of consumables, byproducts, wastes, and fuel. Model parameters in any or all of these areas
may be uncertain, depending on the state of development of the technology, the level of detail of
the performance and cost estimates, future market conditions for new chemicals, catalysts,
byproducts, and wastes, and so on (Frey, 1991).

It may not always be possible to develop estimates of uncertainty based on classical
statistical analysis, nor would such an approach be appropriate in many cases. Particularly for new
process technologies, data may be lacking regarding some types of uncertainty. For example, the
effect of scale-up on process performance may not be fully understood. Thus, analysis of bench-
scale test data alone may be an insufficient basis for estimating the total uncertainty in a variable.
When data are lacking, estimates of uncertainty must rely on the informed judgments of technical
experts. Judgments regarding uncertainties can be encoded as probability distributions, using
techniques discussed elsewhere (Morgan and Henrion, 1990).

Uncertainties in specific performance and cost parameters were explicitly characterized
using probability distributions. Identification of parameters that should be treated probabilistically,
and the estimates of uncertainties for these parameters, were based on literature review, data
analysis, and elicitation of expert judgments from METC process engineers involved in technology
development.

The characterization of performance uncertainties focused on five major process areas:
gasification, sulfation, zinc ferrite desulfurization, gas turbine, and SCR. Uncertainties in
additional cost model parameters also were characterized, including direct and indirect capital costs,
operating and maintenance costs, financial assumptions, and unit costs of consumables,
byproducts, and wastes. These assumptions are given in Table 1. For details see Frey (1991).
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Table 1. Summary of the Base Case
Deterministic Values and Uncertainties for the
Advanced IGCC System with Hot Gas
Cleanup.

Process Modeling of Advanced Technologies Under Uncertainty

Table 1. Continued.

Description Deter. Description Deter.
and Units Value Distribution and Parameters2 and Units Value Distribution and Parameters?
ASIFIER Absorber Pres. Drop

Gasifier Pres., psia 465

Gasifier Temp., °F 1,900 T 1,900 to 1,950(1,900)

Overall Carbon

Conversion,wt-% 95 T 9 to 97 (95
09/C MolarRatio 046 T 045 to 047 (0.46)
H20/0O72 Molar

Ratio, 0.45

Sulfur Capture,

mol-% inlet sulfur 90 T 8 to 95 (90)
Ca/S Molar Ratio 2.6 T 2 to 28 (2.6)
Ammonia Yield

% of coal N 0.10 T 0005 ¢t 0.10(0.10)

FATION

SO72 Emissions,

1b /MMBtu 001 T 001 to 0.05(0.01)
NOy Emissions,

1b /MMBtu 015 T 010 to 0.20(0.15)

Conversion of
CaSt0CaS04,% 60 U 30 to 90

CarbonConv.,% 95 T 9 to 98 (95)

ZINC FERR DE IZATI

Residual Sulfate After

Oxidative Regen.

mol-% of

captured S 75 T 3 to 11

Residual Sulfide After
Reductive Regen.
mol-% of S

in sulfate 85

Sorbent Sulfur
Loading, wt-%
S in sorbent 17

Sorbent Attrition 1.0 F
Rate, wt-%/cycle

1.5

N 216 03184 (17

5%: 0.17 to 0.34
20%: 0.34 to 0.5
25%: 0.5 to 1
25%: 1 to 1.5
20%: 1.5 to 5

5%: 5 to 25

(Continued)

psi/ft bed height 0.4

Absorption
Cycle, hrs 30

Max. Vessel Dia., ft 12.5
Max. Vessel Ht., ft 37.5

GAS TURBINE

Pressure Ratio 13.5
Turbine Inlet

Temp, °F 2,300

Exhaust Flow, Ib/s 938
Thermal NOx, frac.

air N fixated x10°5 425 U 10 to 7.5

Fuel NOy, % conv.

NH3 to NOx 9Q T 50 to 100 (90)
Converted CO, wt-%

COinfuelgas 0.9885 U 0.9772 to 0.9999

ELECTIVE CATALYTIC RED N
NOx Removal, % 80.0

Temp., °F 717
No. Catalyst Layers 3

Layer Replacement

Interval, hrs 11,388 U 5,694 to 17,082

NH3 Slip, ppmv 10 U 10 o 20

Catalyst Activity
Uncertainty Factod 0.5 U 0 to 1

Dilution Steam Ratio,
H>O:NHj3 19

Pressure Drop,psi 40 U 19 to 6.1
CAPITAL COST PARAMETERS, fractions

Engineering and
Home OfficeFee 0.10 T 0.07 to 0.13 (0.10)
Indirect Construction
Cost Factor 020 T 0.15 to 0.250.20)
Project Uncertainty 0.175 U 0.10 to 0.25
General Facilites  0.20

(Continued)
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Table 1. Continued.
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Table 1. Concluded.

Deter.
Value Distribution and Parameters?

Description
and Units

Deter.
Value Disribution and Parameters?

Description
and Units

UNCERTAINTIES % of estimated direct cost?

Coal Handling 5

Limestone Hdlg. 5

Oxidant Feed 10

Gasification 20 T 0 to 40 (20)
Sulfation 40 T 20 to 60 (40
Zinc Ferrite 40 U 0 to 80
Sulfuric Acid Plant 10

Boiler Feed Water 0

Gas Turbine 25 U 0 to 50
HRSG 2.5

SCR 10 T 0 to 20 (10)
Steam Turbine 2.5

General Facilities S U 0 to 10
MAINTENANCE COSTS, % of process area total

cost¢

Coal Handling 3
Limestone Hdlg. 3
Oxidant Feed 2
Gasification 45 T 3 to 6 4.5)
Sulfation 4 T to 6 @
Zinc Ferrite 3 T 3 1 6 (3
Boiler Feed Water 0
Gas Turbine 2 T 15 to 6 @
HRSG 1.5
SCR 20T 15 1o 3O
Steam Turbine 1.5
General Facilities 1.5
(Continued)

OTHER FIXED QPERATING COST PARAMETERS
Labor Rate, $/r 19.70 N 17.70 to 21.70

VARIABLE OPERATING COST PARAMETERS
Limestone, $/ton 18 18 o 25 (18)

T
Zinc Ferrite, $/1b 300 T 0.75 to 5.00 (3.00)
SCR Catalyst, $/f3 250 U 250 to 840
Ammonia, $/ton 150 U 150 to 225
AshDisp,$fton 10 T 10 to 25 (10)

DIRE T REGRESSION MODEL
ERROR TERMS, $ million

HRSG 0 N-173 to 173
SCR 0 N -013 to 0.13
Steam Turbine 0 N -158 to 158

4 F=Fractile distribution; N=Normal distribution;
T=Triangular distribution; U=Uniform distribution. For
Uniform distributions, the lower and upper bounds are
given. For the triangular distribution, the mode is
given in parentheses. For the fractile distribution, the
lower and upper bounds for each range are given, along
with the probability of sampling within that range. For
normal and lognormal distributions, the 99.8 percent
probability range is given.
b For direct costs, the deterministic values represent
"contingency factors” as defined by EPRI (1986) and
others. For probabilistic studies, uncertainty in capital
cost is represented by an uncertainty factor, which is
described by a probability distribution.
€ Includes indirect capital costs and contingency costs
prorated to each process area
d Catalyst activity is caculated as follows:
A® = Auin + A exp(-t_)
T

See Frey (1992) for details. The uncertainty factor is
used to calculate Apin:

Ann=05+041,
and to calculate T, based on a reference activity level

Aty):

A(t) =0.75 + 0.2 f; t; = 8760 hours
where A(t) = relative catalyst activity, t = time, Ay =
minimum catalyst activity, Ajpc = incremental activity
loss over time, T, = activity loss time constant, f; =
uncertainty factor.
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Technical experts at METC provided judgments regarding uncertainties in the zinc ferrite
desulfurization process area. Because the experience of the METC experts was strongly
performance-oriented, and less cost-oriented, the focus of the uncertainty elicitations was on
performance. A briefing packet was developed and distributed to each METC expert. The packet
consisted of three parts: (1) a nine-page introduction to uncertainty analysis; (2) a ten-page
technical background paper on the zinc ferrite process area, with focus on specific aspects that may
be uncertain; and (3) a written questionnaire asking for uncertainty judgments for specific model
parameters. After the questionnaires were returned, a follow-up phone interview was used to
clarify some responses. The responses were then encoded into the model as probability
distributions (Frey, 1991).

The IGCC models were run on a DEC VAXStation 3200 mini-computer using the public
version of ASPEN with the new stochastic modeling capability (Rubin and Diwekar, 1989). A
deterministic analysis may take approximately 20 to 30 minutes to run, including input translation
and other steps. For a probabilistic simulation, the flowsheet is executed many times, with a
different set of values (samples) assigned to uncertain input parameters each time. Thus, a
probabilistic analysis with a sample size of 100 may take 12 hours to run. However, while
stochastic simulation requires an initial computer-intensive phase, the interpretation of results is
much easier and more meaningful compared to sensitivity analysis.

MODELING RESULTS

The engineering models were exercised in the probabilistic modeling environment to
characterize uncertainties in key measures of plant performance, emissions, and cost, based on the
uncertainties assigned to model input parameters. Model results are given in Table 2 for both
deterministic point-value and probabilistic simulations. All results reported here are based on a
plant size of approximately 730 MW using Illinois No. 6 coal. A few of these results are
discussed in more detail.

Uncertainty in Performance and Cost

The uncertainty in the plant thermal efficiency covers a 90 percent probability range of less
than 2 percentage points, and the mean, median, and deterministic values approximately coincide.
The distribution is slightly skewed toward lower values. This result is expected due to the negative
skewness of the uncertainty in carbon conversion. Conversely, the plant heat rate, which is
inversely related to plant thermal efficiency, has a slight positive skewness, as illustrated in Figure
4. While this result shows close agreement between the deterministic estimates and the central
values from the probabilistic simulation, such findings are not typical of all technologies. For
example, for other IGCC systems, the deterministic estimate may substantially over-predict plant
efficiency (see Frey, 1991 for examples).

The advanced IGCC system with hot gas cleanup has very low SO2 emissions compared to
conventional coal-fired power plants with flue gas desulfurization (Frey and Rubin, 1992). This
system, which is equipped with SCR for NOy control, also has lower NOx emissions than typical
coal-fired power plants. From Table 2, the median NOy emission rate is lower than the
deterministic estimate. This result is obtained because of the negative skewness of the uncertainties
in both the formation rate of ammonia in the gasifier and in the conversion rate of fuel-bound
nitrogen (ammonia) to NOy in the gas turbine combustor.

In Figure 5, the uncertainty in total capital cost is compared to the deterministic estimate. In
this case, the deterministic estimate, which includes process and project contingency factors,
coincides with the median value of the probabilistic simulation. Thus, there is approximately a 50
percent chance of cost overrun associated with the deterministic estimate of $1,515/kW. Because
the performance parameter uncertainties were symmetric or only moderately skewed, and because
all of the cost related uncertain parameters affecting capital cost were assumed to be symmetrically

10
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Table 2. Summary of Results from Deterministic and Probabilistic Simulations of a 730 MW Air-
Blown KRW-based IGCC System with Hot Gas Cleanup and SCR.2

"Best
Parameterb Units¢ Guess"d f 50 n o fos - fos
Plant Performance
Thermal Efficiency %, HHV 40.9 41.0 40.9 0.5 399 - 41.7
Coal Consumption Ib’kWh 0.743 0.741 0.743 0.009 0.727 - 0.760
Process Water Consump. Ib/kWh 0.768 0.768 0.768 0.015 0.742 - 0.793
Plant Discharges
SO, Emissions IbMMBmu 0.013 0.014 0.014 0.001 0.013 - 0.016
NOx Emissions IbMMBm 0.148 0.104 0.104 0.028 0.058 - 0.147
CO Emissions IbkWh 0005 0.005 0.005 0.003 0.005- 0.009
COy Emissions Ib/kWh 1.72 1.71 1.72  0.021 1.69 - 1.76
Solid Waste IbkWh 0.230 0.228 0.228 0.012 0.205 - 0.247
Plant Costs
Total Capital Cost $KkW 1,515 1514 1,513 79 1,392 - 1,636
Fixed Operating Cost $/kW-yr 51.4 54.4 54.7 4.6 46.8 - 63.0
Variable Operating mills/kWh 19.9 20.9 20.9 0.7 19.9 - 22.1
Coal 15.3 15.2 15.3 0.2 15.0 - 15.6
Other 4.7 5.6 5.7 0.6 4.8 - 6.7
Cost of Electricity mills/kWh 56.5 58.0 58.0 2.1 544 - 61.3

2 The notation in the table heading is defined as follows: fp = nth fractile (f 50 = median), L = mean; and ¢ =
standard deviation of the probability distribution. The range enclosed by f o5 to f 95 is the 90 percent probability
range. All costs are January 1989 dollars.

b Coal consumption is on an as-received basis. Water consumption is for process requirements including makeup
for steam cycle blowdown, gasifier steam, zinc ferrite steam, and SCR. Solid waste includes gasifier bottom ash and
nonrecycled fines from fuel gas cyclones.

¢ HHYV = higher heating value; MMBtu = million Btu.

d Based on a deterministic simulation in which median or modal values of uncertain variables are assumed as "best
guess” inputs to the model

distributed, the uncertainty in capital cost is approximately symmetric. The 90 percent probability
range for capital cost is $244/kW, or approximately * $120/kW from the nominal estimate.

In spite of the agreement between the deterministic and probabilistic results for capital cost,
the two analyses do not agree with respect to the cost of electricity, as seen in Figure 6. There is
more than a 75 percent probability that the cost will be higher than the deterministic estimate. In
the probabilistic analysis, the uncertainties in the maintenance cost of the gas turbine, zinc ferrite,
sulfation, and SCR process areas were assumed to be positively skewed, reflecting the lack of
commercial experience with these systems for this application. Also, the unit costs of limestone,
zinc ferrite sorbent, SCR catalyst, and ash disposal were assumed to be positively skewed,
representing uncertainties in market conditions and environmental regulations. These assumptions
affect fixed and variable operating cost and, in turn, the cost of electricity.

11
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Table 3. Key Uncertainties for Air-Blown KRW-based IGCC Based on Partial Correlation
Coefficients.

Selected Output Parameter®P '
Efficiency Total Capital Cost Levelized Cost of Electricity

Gasifier Carbon Conv. (-.990) Project Unc. (.999) Project Unc. (.998)
CaS Sulfation Rate (-.998) Gas Turbine DC (.999) Gas Turbine DC (.996)
Oxygen/Carbon Ratio (.996) Gasification DC (.998) Gasification DC (.994)
Gasifier Temperature (-.987) Indirect Const. (.997) Indirect Const. (.991)
Gas Turbine CO Conv (-.972) SE HRSG (.994) Gas Turbine Maint. (.989)
Gasifier NH3 Yield ((913) SE Steam Turbine (.993) Gasifier Maintenance (.985)
Ca/S Ratio (-.826) Engr & Home Fees (.993) Ash Disposal Cost (.981)
Sulfator Carbon Conv. (-.757) CaS Sulfation Rate (-.955) Engr & Home Office (.978)
Thermal NOy (.659) Sulfation DC (.954) SE HRSG (.978)
Fuel NOy (.639) General Facilities DC (.953) SE Steam Turbine (.974)
Sulfur Capture (-.560) Zinc Fer. Unit Cost (.952) CaS Sulfation Rate (-.968)

— SCR Catalyst Cost (.951) Ca/S Ratio (.965)

— Zinc Ferrite DC (.941) SCR Catalyst Cost (.964)

— Gasifier Carbon Conv. (.930) Zinc Ferrite Unit Cost (.937)

— Ca/S Ratio (.874) Limestone Unit Cost (.920)

— Gasifier NH3 Yield (.825) Gasifier NH3 Yield (.891)
— Gasifier Temperature (-.725)  Sulfation DC (.891)

— SCR Activity (-.592) SCR Replacement Rate (-.868)
— Thermal NOy (.546) Sulfation Maint. Cost (.847)
— SCR DC (.421) General Fac. DC (.834)

aAbbreviations for uncertain parameters: DC = direct cost; HRSG = heat recovery steam generator; SE = standard
error; SCR = selective catalytic reduction.

bOnly results that are statistically significant are shown, up through the 20th most sensitive input uncertainty. For
plant efficiency, correlation coefficients after the 11th most important are not longer statistically significant.

Key Uncertainties

The primary advantage of probabilistic simulation over traditional sensitivity analysis is the
simultaneous incorporation of uncertainties in multiple model inputs. The resulting interactions
among uncertain variables results in uncertainties in measures of process viability. Research can
provide additional information about the uncertain input variables, resulting in changes in their
uncertainty distributions (such as the mean or standard deviation) and, in turn, in the overall
uncertainties of the technology. Therefore, it may be fruitful to reduce the uncertainties of key
variables that contribute most to the risk of technology failure.

The key input uncertainties resulting in uncertainty in plant efficiency, total capital cost, and
the cost of electricity are shown in Table 3. These results are based on partial correlation
coefficient analysis.

The plant efficiency is most strongly influenced by uncertainty in the gasifier carbon
conversion efficiency. However, uncertainties related to the sulfation unit are also significantly
correlated with efficiency. In the air-blown KRW system, limestone is used as a sorbent to
remove sulfur during gasification. Because of the reducing atmosphere in the gasifier, the spent
sorbent contains sulfur in the form of calcium sulfide. The calcium sulfide must oxidized to
calcium sulfate in a fluidized bed boiler prior to landfilling the spent sorbent. A high sulfide
concentration would result in a solid waste which would be classified as hazardous under RCRA.
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Figure 7. Sources of Uncertainty for the Cost of Electricity.

However, the conversion rate of calcium sulfide to calcium sulfate in the boiler is uncertain. The
energy released from this exothermic reaction is used to generate steam for the plant steam cycle,
and is thus recovered as an energy credit.

The total capital cost is strongly influenced by uncertainties in indirect capital costs, process
area direct costs, and the error terms of two direct cost regression models (see Frey, 1991, for
details). For this technology, uncertainty in capital cost is not strongly influenced by performance
uncertainties. Similarly, uncertainty in the cost of electricity is influenced primarily by capital,
fixed operating, and variable operating cost uncertainties, with weaker influences from
performance-related uncertainties. Of the skewed uncertainties affecting the cost of electricity, the
gas turbine and gasifier maintenance costs are the most highly correlated. The ash disposal, SCR
catalyst, zinc ferrite sorbent, and limestone unit costs are also significantly correlated.

Many of the key uncertainties identified here, such as carbon conversion efficiency and
maintenance costs, can be addressed by targeted research and development efforts.

Probabilistic Sensitivity Analysis

Another approach to identifying key uncertainties is probabilistic sensitivity analysis.
Insight into the sensitivity of output variable uncertainties to the assumptions regarding
uncertainties in input variables can be obtained by comparing the effect that different assumptions
have on the result. One type of useful insight is the relative importance of uncertainties in
performance parameters versus cost parameters. Another is the relative contribution to uncertainty
from different process areas. Through probabilistic sensitivity analysis, it is possible to
characterize the effect that specific uncertainties or groups of uncertainties have on a given output
variable. In cases were uncertainties are excluded from a case study, the probability distribution
for the parameter is replaced by its deterministic value.

An example of a probabilistic sensitivity analysis is shown in Figure 7 for the cost of
electricity. As shown in the figure, the range of uncertainty in the cost of electricity solely
attributable to uncertain performance-related parameters is narrow. The 90 percent probability
range attributable to performance only is less than 2 mills/kWh, from 55.2 to 56.7 mills/kWh.
Uncertainties in capital cost are shown to substantially increase the variance in the cost of electricity
without shifting the central value of the distribution significantly. The 90 percent probability range
in this case covers 5.8 mills/kWh from 53.1 to 58.9 mills/kWh.

The interaction between uncertainty in O&M costs with performance uncertainties results in
an upward shift in the central value of almost 2 mills/kWh and an increase in the variance. As seen
in Figure 7, the difference between the case with uncertainties in performance and O&M costs and
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Table 4. Impact of SCR on Performance, Emissions, and Cost of a 730 MW Air-Blown KRW-
based IGCC System with Hot Gas Cleanup.2

"Best \
Parameter UnitsP Guess"c f 50 T c fos - fos
Change in Heat Rate  BTU/kWh 48 23 24 6 14 - 33
NOx Emissions IbMMBu:  0.566 0.384 0.383 0..111 0.201 - 0.546
NH3 Emissions 1031/ MMBtu  9.97  14.7 14.8 2.9 10.4 - 19.2
Total Capital Cost $kW 24 28 29 7 19 - 41
Fixed Operating Cost ~ $/kW-yr 0.7 0.6 0.7 0.1 05- 0.8
Variable Operating mills/kWh 0.5 0.7 0.7 0.3 0.3 - 1.2
Cost of Electricity mills/kWh 1.1 1.4 1.4 0.4 0.8 - 2.0

a All values shown are differences between a system with SCR and one without SCR. The notation in the table
heading is defined as follows: fp = nth fractile (f 50 = median), p = mean; and ¢ = standard deviation of the
probability distribution. The range enclosed by f g5 to f 95 is the 90 percent probability range. All costs are
January 1989 dollars.

b MMBu = million Btu.

€ Based on a deterministic simulation in which median or modal values of uncertain variables are assumed as "best
guess” inputs to the model

the "all uncertainties" case is in the variance, not the median. The difference between these two is
the inclusion of the symmetric capital cost uncertainties in the "all uncertainties" case. When all
performance parameters are held at their deterministic "best guess" values, and all cost-related
uncertainties are included in the probabilistic simulation, the result is very similar to that obtained
when all uncertainties are simulated.

Thus, from the probabilistic sensitivity analysis, it is clear that performance-related
uncertainties are a relatively minor component of overall uncertainty in cost for this technology.
Furthermore, while the variance in the result is strongly influenced by uncertainties in capital cost,
it is the uncertainties in O&M costs that are responsible for the shift in the central tendency of the
distribution for the cost of electricity. Therefore, the risks of cost growth for this particularly
technology are shown to be embodied in the annual operating and maintenance costs.
Uncertainties in O&M costs are often overlooked in conceptual design studies, which tend to focus
more on capital costs.

Comparing Designs Probabilistically

An example of probabilistic design analysis is considered here. The design assumption
concerns whether an SCR NOx control system is employed. Such a system is likely to be required
to meet local environmental permitting requirements. To evaluate the effect of SCR on the IGCC
system, two probabilistic simulations were executed: one with SCR (the base case) and one
without. The results from these two simulations were then paired, and the probability distributions
for the differences between them were estimated. Similarly, two deterministic analysis were
performed, and the differences between them were calculated.

The impact of the SCR system on selected measures of plant performance, emissions, and
cost is summarized in Table 4, based on both deterministic and probabilistic simulations. The SCR
system increases the plant heat rate (decreases plant efficiency) due to increased gas turbine
backpressure, steam consumption required for ammonia vaporization and injection upstream of the
SCR catalyst, and electric power consumption required for process area auxiliaries. The heat rate
penalty estimated from the deterministic simulations is substantially higher than the range estimated
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Figure 8. Comparison of Deterministic and Probabilistic Estimates of the Levelized Total Cost
for Selective Catalytic Reduction NOy Control.

from the probabilistic simulations. This is due to the negative skewness of uncertainties in the
uncontrolled NOy emission rate, which in turns influences the ammonia injection requirement,
steam requirement, and auxiliary electric power consumption. This skewness also results in a
higher estimate of NOy emission reduction from the deterministic simulation than from the
probabilistic simulations.

A pollutant of potential concern is ammonia. A portion of ammonia passes through the
SCR system unreacted, and is vented to the atmosphere. Many design studies assume that this
ammonia "slip" may be approximately 10 ppm, and thus this value was used as the "best guess" in
the deterministic simulation. However, values up to 20 ppm are not uncommon (Schorr, 1991).
Thus, the deterministic estimate is at the low end of the range of probabilistic results. For the
IGCC system without SCR, ammonia is assumed not to be emitted.

The capital cost associated with the SCR system is uncertain by a factor of over 2, due
primarily to uncertainties affecting catalyst requirement and to uncertainty in the catalyst unit cost.
A comparison of the deterministic and probabilistic estimates of the levelized total cost of the SCR
system is shown in Figure 8. The disparity between the estimates is due primarily to uncertainty in
the unit cost of the catalyst. There is over an 80 percent probability that the levelized cost will be
higher than the "best guess" estimate. Furthermore, the levelized cost is uncertain by a factor of
nearly 5.

Thus, while the SCR system will substantially reduce the NOx emissions of the IGCC
system, it has associated problems due to ammonia emissions and catalyst disposal, and it is likely
to increase the capital cost by approximately $30/kW and levelized cost by 1.4 mills/kWh. It may
increase levelized costs by as much as 2.5 mills/kWh. In this example, deterministic estimates of
both capital and levelized cost are lower than the central values from the probabilistic estimates.
However, without SCR, and in lieu of other NOx control measures such as advanced rich/lean or
catalytic combustors, the NOx emissions from this IGCC system are likely to be unacceptably
high.

Analysis of design trade-offs probabilistically thus provides explicit insights into the risks
of potentially high cost or potential poor performance associated with specific options. Other
examples of this type of analysis are reported by Frey (1991).
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OTHER APPLICATIONS

Other applications of the probabilistic evaluation method not discussed here include: (1)
evaluation of the reductions in uncertainty that may be obtained from further process research; (2)
evaluation of alternative judgments regarding model parameter uncertainties by different experts as
they affect model results; (3) evaluation of the importance of correlation structures in model
parameter uncertainties; (4) comparative analysis of competing technologies under uncertainty; and
(5) the use of decision analysis techniques to interpret modeling results. These types of
applications are discussed by Frey (1991).

DISCUSSION AND CONCLUSIONS

A new capability for stochastic analysis has been developed for the ASPEN chemical
process simulator. This capability can be applied to analyze uncertainties in any process that can be
modeled using ASPEN. A detailed case study has been presented to illustrate the application of the
capability and the types of results that may be obtained.

Compared to deterministic analysis, the probabilistic modeling approach requires that more
effort be devoted to characterizing the range and likelihood of values assigned to performance and
cost parameters in an engineering model. The time required to develop estimates of uncertainty is
usually higher than the time that would be required to make a single "best guess" estimate.
However, by systematically thinking about uncertainties in specific parameters, an analyst is more
likely to uncover potential sources of cost growth or performance shortfalls that are historically
overlooked in analyses of new technologies.

As shown in many of the case studies, the influence of skewed distributions on model
results can be important. Skewness in model input parameters tends to shift the central tendency of
performance and cost results, and can lead to distributions with long tails representing unfavorable
outcomes. These types of interactions cannot be evaluated systematically in deterministic analysis.
While the information requirements for probabilistic analysis may be more demanding, the
estimates of performance and cost are likely to be more realistic. Thinking about uncertainties is an
important way to gain understanding into the key factors that drive the risk of failure or likelihood
of success.

Thus, while traditional approaches to technology evaluation inadequately account for
uncertainties and often lead to over-optimistic estimates of performance and cost, the probabilistic
evaluation method advanced here permits the effect of uncertainties to be evaluated systematically.
Furthermore, the "surprises” that often account for "cost growth" can be captured by the use of
sufficiently detailed engineering models coupled with specification of uncertainties in specific
model parameters. Probabilistic modeling is an important and versatile technique for developing
realistic estimates of process viability and for prioritizing further research.
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