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Knowledge of uncertainty
helps prevent overcon�-
dent use of emissions esti-
mates in industrial ecology
applications and enables an
evaluation of the robust-
ness of comparisons of al-
ternative processes and
product designs.

Integrated Environmental
Assessment, Part I
Estimating Emissions

H. Christopher Frey and Mitchell J. Small

A key element of industrial ecology involves
estimating the environmental impact of

products and processes. This assessment gener-
ally entails an evaluation of pollutant emissions
and sometimes of fate and transport in the en-
vironment, exposure of humans or other envi-
ronmental receptors, and the resulting health,
ecological, or economic effects. When all of
these steps are effectively executed, the process
is often called integrated environmental assess-
ment.

The analysis of emissions is especially salient
in life-cycle assessment (LCA), where the inven-
tory and impact assessment of emissions from the
various stages in the life cycle
of a product is a critical com-
ponent of the overall environ-
mental evaluation. Analysis of
emissions plays a similarly cen-
tral role in substance �ow anal-
ysis (SFA), another tool widely
used in the industrial ecology
community. A review of the
state of the art of systems mod-
eling for each of the steps in an
integrated environmental as-
sessment is provided in a series
of columns, beginning with this evaluation of
methods for emissions estimation and modeling.

Good emissions inventories are necessary as
the �rst step in predicting environmental impact,
but they also play an essential role when assessing
trends and progress in industrial ecology, evalu-
ating international treaty compliance, and in the

enforcement of environmental regulations. This
column reviews the principal methods used to
estimate emissions and the critical need to rec-
ognize and characterize the uncertainty in the
resulting estimates and inventories.

Estimating Emissions

The major techniques for estimating emis-
sions include the following:

� Direct measurement, using either grab, pe-
riodic, or continuous monitoring

� The calculation of a mass balance, with
emissions computed as the difference be-

tween material inputs and
products

� The use of emission factors
that relate emission rates to
activity levels (e.g., product
production, employment, or,
in the case of mobile source
emissions, “vehicle miles
traveled”)

� The use of more advanced
process models for emissions

� The application of inverse in-
ference from observed ambi-
ent concentrations

Source testing through direct measurement is
usually preferred among these options; however,
accurate emissions monitoring requires the mea-
surement of both �uid �ow rates (e.g., of air or
water from discharge stacks or pipes) and pollut-
ant concentrations, and this is dif�cult to
achieve in many applications. Although new
technologies for emissions monitoring are always
being developed,1 certain emission pro�les are
nearly impossible to measure directly, especially
for diffuse, nonpoint, or fugitive sources.
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Material balance calculations are always cor-
rect in theory, but suffer from inaccuracy when
the emissions are (as usually hoped) a very small
fraction of the system throughput. Emissions fac-
tors provide a standardized approach for estima-
tion, but suffer from inherent simpli�cations and
errors because they typically ignore differences
between processes and factories or, for example,
in the case of mobile emissions, differences in
vehicles, fuels, traf�c conditions, and driver be-
havior.2 Some of these simpli�cations can be ad-
dressed with more sophisticated engineering pro-
cess models. Examples include models for electric
power plant operations and industry-wide models
for sectors of the chemical industry. Ideally, when
pollutant emissions are included as part of an in-
dustrial process design and simulation model,
process emissions can be estimated under a va-
riety of different operating conditions (Diwekar
and Small 1998, 2002).

Back-inference methods use observed con-
centrations in the air, soil, or water to infer the
emissions from nearby sources. Such methods
must be coupled with an appropriate pollutant
fate-and-transport model and are especially help-
ful for estimating nonpoint, area source or fugi-
tive emissions.

Characterizing Variability and
Uncertainty in Emissions
Estimates

Although a single number is often preferred
for an emission estimate, the reality is that emis-
sion rates vary from one source to another within
a given source category and temporally for any
given source. Emissions vary over time and from
one source to another because of differences in
design, feedstock compositions, ambient condi-
tions, and maintenance and repair. Thus, there
is inherent variability in emissions revealed by
measurements on multiple sources or by repeated
measurements of the same emission source. In
contrast, uncertainty refers to our lack of knowl-
edge regarding the true but unknown value of a
quantity, such as the population average emission
factor for a particular source category. The av-
erage emission factor is subject to uncertainty for
several possible reasons: (1) random sampling er-
rors, (2) measurement errors, (3) nonrepresen-
tativeness of available data, (4) lack of infor-
mation, and/or (5) data entry errors.

The range of uncertainty in emission factors
can be substantial. For example, for light-duty
gasoline vehicles, the uncertainty in the �eet av-
erage emission factor is as low as 5 10% to as
much as 1 90% to ` 280% (Frey and Zheng
2002a). The uncertainty in a statewide annual
emission inventory for power plant NOx emis-
sions is estimated to be 1 16% to ` 19% (Frey
and Zheng 2002b). The positive skewness occurs
because emission rates are highly variable, but
emissions must be nonnegative.

The U.S. Environmental Protection Agency,
U.S. National Research Council, and Interna-
tional Panel on Climate Change (IPCC) have
all expressed concern regarding the level of un-
certainty associated with emission factors and
inventories and the need for development and
application of appropriate methods for quanti�-
cation of this uncertainty. Numerous challenges
to the characterization of uncertainty in emis-
sions exist. Some are philosophical, whereas
others are methodological and organizational.
Philosophical challenges typically center on the
debate as to whether expert judgment is an ac-
ceptable basis for estimating uncertainty. Even
methods that are based solely on the statistical
analysis of available data involve many steps,
each of which requires judgment. For example,
the following key questions must be answered:
Are the available data representative? What dis-
tribution is selected and �t to the data? What
goodness-of-�t test is used? What criteria are
used to reject a poor �t? Where data are unavail-
able or not representative, judgments regarding
uncertainties can be encoded as probability dis-
tributions using expert elicitation protocols.
These protocols are based upon an understanding
of cognitive psychology and seek to avoid over-
con�dent or biased estimates by countering the
heuristics that people typically use to make judg-
ments.

Common methodological challenges and
problems that occur when characterizing emis-
sion variability and uncertainty include measure-
ments below the detection limit, statistical de-
pendence among multiple quantities, categorical
data, and a lack of sample data. Although meth-
ods exist for estimating uncertainty for such dis-
tributions, empirical data may at times be com-
posed of a mixture of two or more distributions,
typically because different processes generate dif-
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ferent portions of the database. In such cases,
mixtures of distributions can be used to represent
variability, and uncertainty can be inferred based
upon the �tted mixture distribution. Two or more
inputs to an inventory could be dependent upon
each other. Where inputs are autocorrelated,
vector autoregressive regression models can be
used to account for both inter- and intra-unit de-
pendence in the uncertainty of plant emissions.

In some cases, such as for chromium, mercury,
arsenic, and particulate matter (PM) emissions,
it is necessary to characterize the chemical spe-
ciation. For example, weight fractions of PM
must be assigned to species categories, and the
sum of the weight fractions must be equal to 1,
which in turn induces a statistical dependence
among the two or more weight fractions. For
some inputs to an inventory, most typically ac-
tivity factors, sample data are unavailable for
making statistical inferences regarding uncer-
tainty. In such cases, an expert judgment or mod-
eling approach may be required.

Uncertainty analysis is most easily done if it
is included as part of the original development
of a database or a model. A key dif�culty when
trying to retrospectively develop uncertainty es-
timates is to obtain a well documented and com-
plete database. As a �rst step to facilitate uncer-
tainty analysis, we recommend that the
developers of emission factors routinely report,
at a minimum, the mean, standard deviation, and
sample size of the data used to develop the esti-
mate. This information should be provided as a
part of the LCA and SFA public databases that
are now under development. Furthermore, the
data from which these statistics were estimated
should be made available, including relevant
process data and descriptive information. Knowl-
edge of uncertainty helps prevent the overcon-
�dent use of emissions estimates in industrial
ecology applications and enables an evaluation
of the robustness of comparisons of alternative
processes and product designs. With the central
role that emissions estimates play in LCA and
SFA, it is critical for industrial ecologists to en-
sure that they acquire and use the best methods
and information possible, but also recognize the
nature and implications of the uncertainty that
remains.

Notes

1. A key advance in recent years has been the de-
velopment of continuous emission monitors for
selected air pollutants, such as SO2, NOx, and
CO2, which have enabled market-based pollution
control strategies based on cap and trade pro-
grams to be implemented with con�dence. More
information on emissions monitoring protocol is
available at the U.S. Environmental Protection
Agency Emissions Measurement Center
^www.epa.gov/ttn/emc/& and the European Model
Monitoring Training Accreditation Programme
^www.emmtap.eu.com/&.

2. References to research on this and other speci�cs
mentioned in this column can be found in an e-
supplement available on the Journal of Industrial
Ecology Web site at ^http://mitpress.mit.edu/ JIE&.
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